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Korteweg-de Vries 
equation

• Boussinesq 1877, Korteweg-de Vries 1895

ut + 6uux + uxxx = 0

• 1-soliton solution (solitary travelling wave):

u(x, t) =
c

2
sech2(

p
c(x� ct)), c = const

• 1967: Gardener, Greene, Kruskal and Miura:
KdV equation is completely integrable



2-soliton solution
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Soliton resolution
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ut + 6uux + ✏2uxxx = 0, u(x, 0) = sech2x
(x 7! ✏x, t 7! ✏t)



Blow-up

• generalized KdV equation

ut + upux + ✏2uxxx = 0, p 2 N

•
ut + ✏2uxxx = 0

(linear) and
ut + upux = 0

(shocks) do not have blow-up of the L1 norm of u

• for p < 4: global existence in time,
for p = 4: finite time blow-up (Martel, Merle, Raphaël: rescaled soliton),
for p > 4: finite time blow-up, no theory yet.



Theorem: Martel, Merle, Raphaël (2013)
Let T↵⇤ be the set given by

T↵⇤ =

⇢
u 2 H

1 with inf
�0>0,x02R

����

����u� 1

�0
Q

✓
·� x0

�0

◆����

����
2

< ↵
⇤
�

and let A be the set of initial data u(x, 0) = u0 given by

A =

⇢
u0 = Q+ ✏0 with ||✏0||H1 < ↵0 ⌧ 1 and

Z

x>1
x
10
✏
2
0dx < 1

�
, (1)

where 0 < ↵0 ⌧ ↵
⇤ ⌧ 1 are universal constants, and let u0 2 A. If E[u0] < 0,

then u(x, t) blows up at the finite time t
⇤ and u(t) 2 T↵⇤ for t < t

⇤. Then there
exist a constant (with respect to t) l0(u0) > 0 and functions L(t) and xm(t)
such that for t ! t

⇤

u(x, t)� 1p
L(t)

Q

✓
x� xm(t)

L(t)

◆
! ũ 2 L2, (2)

and

||ux||2 ⇠ ||Q0||2
l0(t⇤ � t)

(3)

with Q from (??), where

L(t) ⇠ l0(t
⇤ � t), xm(t) ⇠ 1

l
2
0(t

⇤ � t)
. (4)



Perturbed gKdV soliton, 
n=4
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Perturbed solitary wave, n=4
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Fitting to rescaled soliton

1.9 1.92 1.94 1.96 1.98 2
0

0.5

1

1.5

2

2.5

3

x

u

✦ Martel, Merle, Raphaël 2012: selfsimilar blow-
up, blow-up profile dynamically rescaled 
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Korteweg-de Vries equations, Physica D 304-305 (2015), 52-78



gKdV, small dispersion
u0 = sech2x, ✏ = 0.1 n = 4



gKdV, small dispersion
u0 = sech2x, ✏ = 0.01 n = 4



gKdV, small dispersion
u0 = sech2x, ✏ = 0.001
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2D Zakharov-Kuznetsov

ut + (�u + up)x = 0, p = 2, 3, 4.

Introduced by Zakharov and Kuznetsov in 1972 for 3D with p = 2:

Describes propagation of ionic-acoustic waves in uniformly magnetized plasma

Rigorous derivation of ZK from Euler-Poisson system with magnetic field in the long wave
limit (Lannes, Linares, Saut 13)

The amplitude equation for 2d long waves on the free surface of a thin film flowing down
the vertical plane with moderate surface tension and large viscosity (Melkonian and
Maslowe 89)

Derivation of ZK from Vlasov-Poisson system in a combined cold ions and long wave limit
(Han-Kwan 13)

N.M. Stoilov (IMB) Numerical study of DSII October 21, 2019 8 / 63
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n KP (Zakharov (integrable approach), Rousset-
Tzvetkov): KP I line soliton stable for  (small line 
solitons cannot lead to lumps)

n ZK, p=2 (Yamazaki): line soliton stable for 
 (L: period)

n no results appear to be known in  critical and 
supercritical cases

c < c*

c < c* = 4/(5L2)

L2

Transverse stability
<latexit sha1_base64="TY60kRczD3sE2Gl2buu8p//cQHk="></latexit>

K, Saut, Stoilov 2023



Subcritical case, subcritical velocity
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Figure 1. Solution to the subcritical (p = 2) ZK for the locally perturbed soliton
initial data (17) and sub-critical speed: initial data on the left and the evolution of
the L

1 norm on the right.

On the left of Fig. 2 we show the solution for t = 1. On the right of the same figure one can see the
di↵erence of the final state and a line soliton with a fitted value cF of the speed (the maximum of
the final state is fitted to the maximum of (2)) is within 0.5%, the same order of magnitude as the
radiation. The fitted soliton has speed ratio cF /c = 0.9953.

Figure 2. Solution to the subcritical (p = 2) ZK for locally perturbed soliton initial
data (17) and sub-critical speed: on the left the solution for t = 1 and on the right
the di↵erence between the final state and a fitted line soliton (2).

As a second example we consider nonlocalised, but periodic perturbations in y of the form (18)
with c = 0.75 and a = 0.1, b = 1, � = 0 following the same reasoning as before. The initial data can
be seen on the left of Fig. 3. The time dependence of the L

1 norm on the right of the same figure
once more indicates that the solution is stable, and that the final state is a line soliton of slightly
di↵erent mass.



Subcritical case, supercritical velocity

8 C. KLEIN, J.C. SAUT, AND N. STOILOV

Figure 5. Solution to the subcritical (p = 2) ZK for locally perturbed line soliton
initial data (17) and supercritical speed: on the left the evolution of the |u|1 showing
stabilisation and on the right the local di↵erence between the leading lump solitons
and fitted lumps for t = 45.

solution can be constructed as a sum of single soliton solutions, provided the peaks are su�ciently
far away from each other, which is the case here (we simply subtract the solution Q of (5) after
applying the scaling (6) at the maximum). The di↵erence between the solution and the fitted multi-
soliton is shown in Fig. 5 on the right. Locally, the di↵erence is again of the order of magnitude
of the radiation, however we can see a possible development of a second wave of smaller solitons
at the back. Mass re-entering the domain in the x direction does not allow us to investigate this
development further.

Figure 6. ZK solution for locally perturbed line soliton initial data (17) and super-
critical speed for t = 45. Note that the largest soliton appears on the opposite side
of the initial perturbation and is cut in half by the ends of the plotting domain.
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Soliton stability
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Figure: top: Solution to the ZK equation u(x , y , 0) = 1.1Q(x , y): on the left the solution for t = 15,
and on the right the L1 norm. Bottom: Solution for u(x , y , 0) = 0.9Q(x , y): on the left the solution
for t = 10, and on the right the L1 norm.
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Asymptotic profile

Figure: Di↵erence of the solution to the ZK equation for the initial data u(x , y , 0) = �Q(x , y) and a
fitted rescaled soliton : on the left � = 0.9, on the right for � = 1.1.

N.M. Stoilov (IMB) Numerical study of DSII October 21, 2019 16 / 63



Soliton interaction (on the x-axis)



Soliton Interactions
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Figure: Solution to the ZK equation for initial data being the superposition of a soliton with c = 2
centered at x = �10 and a soliton with c = 1 centered at the origin on the x axis for various times on
the left, and a close-up of the bottom right figure of the previous figure on the right.
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Soliton interaction (displaced)



Soliton interaction (displaced)



Soliton resolution

Figure: u(x , y , 0) =

8
><

>:

10 exp(�x2) |x |  1.5

10 exp(�x2 � (y � 1.5)8) x > 1.5

10 exp(�x2 � (y + 1.5)8) x < �1.5
N.M. Stoilov (IMB) Numerical study of DSII October 21, 2019 20 / 63



ZAKHAROV-KUZNETSOV EQUATION IN TWO DIMENSIONS 13
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Figure 15. Solution to the ZK equation (
ZK
1) for the initial data

(
wallcond
16): on the left the L1 norm of the solution in dependence of time,
and on the right the di↵erence between the solution at t = 1.5 and
a fitted soliton. ZKwallmax

Figure 16. Solution to the ZK equation (
ZK
1) for the initial data

u(x, y, 0) = 25 exp(�x2 � 0.05y2) for t = 0.5 on the left, and on
the right the di↵erence between this solution and a fitted soliton. ZKp25gaussflat

Thus the soliton resolution conjecture seems to hold for the subcritical ZK equa-
tion, in the long time behavior of solutions for su�ciently regular localized initial
data only solitons and radiation should appear.

5. The L2 critical case

Since it is known that the direct integration of (
ZKresc
6) with Fourier methods is

problematic, we integrate instead (
ZK
1) and trace certain norms of the solution. It is

expected that a blow-up is observed for x ! 1. Therefore we keep the term xm

in (
ZKresc
6) and solve (

ZKnum
13) in the following. We choose xm in a way that the maximum

of the solution is at x = x0, y = 0 for all times. The quantity x0 is chosen in
a way that the radiation propagating in negative x direction will hit (because of
the imposed periodicity) the computational boundary only at a time shortly before
blow-up where its influence on the blow-up is negligible.



ZK with p=3

L2 critical case.
The L1 norm of the solution as well as the L2 norm of ux indicate a blow-up.
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Figure: Solution to the ZK equation for the initial data u(x , y , 0) = 1.1Q(x , y): on the left the L1

norm of the solution, on the right the L2 norm of ux in dependence of time.
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L2 critical case.
The L1 norm of the solution as well as the L2 norm of ux indicate a blow-up.
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Figure: Solution to the ZK equation for the initial data u(x , y , 0) = 1.1Q(x , y): on the left the L1

norm of the solution, on the right the L2 norm of ux in dependence of time.
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Blow-up behaviour
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Figure: Fitting of various norms of the solution to the ZK equation for the initial data
u(x , y , 0) = 1.1Q(x , y) to ln g(t) ⇠ a ln(t⇤ � t) + b: on the left the L1 norm of the solution, on the
right the L2 norm of ux ; in red the fitted line. We get a = �0.5185, b = �2.0124 and t⇤ = 0.5646,
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L2 critical case: Conjecture

Conjecture

If u(x , y , 0) 2 S(R2) is such that ||u(x , y , 0)||2 < ||Q||2, then the solution to the ZK equation
is dispersed.
If u(x , y , 0) 2 S(R2) is such that ||u(x , y , 0)||2 > ||Q||2, then the solution has a blow-up in
finite time t = t⇤ such that for t ! t⇤

u(x , y , t)� 1

L(t)
Q

✓
x � xm(t)

L(t)

◆
! ũ 2 L2,

and

||ux ||2 ⇠
1

L

where

L(t) ⇠
p
t⇤ � t, xm(t) ⇠

1

t⇤ � t
.
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Zakharov-Kuznetsov in 3D
<latexit sha1_base64="pZEkiA1BV7MJtUwkR75UO1yAvOk="></latexit>

• 3D equation
ut + (uxx + uyy + uzz + up)x = 0,

• p = 2: subcritical

• p = 7/3: L2 critical

• p > 7/3: supercritical

• solitary wave: u(x, y, z, t) = Q(x→ ct, y, z)

→!R3Q+Q→Q2 = 0,

NLS solitary wave in 3D



Ground state
ZAKHAROV-KUZNETSOV EQUATION IN 3D 5

The ground state solution of �cQ+�R3Q+Q
2 = 0 for c = 1 is shown in Fig. 1.

Figure 1. The ground state solution to (8). Left: plot of Q with z = 0. Right: 3D
contour plots of Q on the slices of the coordinate planes. The color bar indicates the
magnitude of the solution.

2.2. Time evolution. The Fourier discretization (14) is used also for the full ZK equation (1), which
is thus approximated by an NxNyNz dimensional system of ordinary di↵erential equations in t of the
form

ût = Lû+N [û], (15)

where L = ikx(k2x + k
2
y + k

2
z) and N [û] = �ikxF(up). Because of the appearance of third derivatives

in x, y, and z, this system is sti↵, implying that explicit methods will be ine�cient due to stability
conditions as they necessitate prohibitively small times steps in order to stabilize the code. Implicit
schemes are less restrictive in this sense, but are computationally expensive, since the resulting nonlinear
equation has to be solved in each time step. In [26, 29] we compared various adapted integrators for
sti↵ systems with a diagonal L as we have here, which are explicit and of fourth order. It turned
out that exponential time di↵erencing (ETD) schemes, see [22] for a comprehensive review with many
references, are most e�cient in the context of the KdV-type equations. There are various fourth order
ETD methods, which all showed a similar performance in our tests. As in [31], we apply the method by
Cox and Matthews [6] in the implementation described in [26, 29]. The accuracy of the time integration
scheme can be controlled via the conserved energy of the equation. Due to limitations in the accuracy
of numerical methods, the computed energy (again Fourier techniques are applied to (3)) will not be
exactly conserved. The quantity �E = |E(t)/E(0) � 1| can be used as discussed in [26, 29] as an
estimate of the numerical error. Typically, the accuracy of the numerical solution is by 1-2 orders of
magnitude worse than this estimator, i.e., the numerical error will at worst of the order of 10�10 if the
relative mass conservation is of the order of 10�12, and if the Fourier coe�cients decrease to the same
order.

Remark 2.1. Note that in this paper we approximate solutions on R3 by simulations on the torus.
Within machine precision, this does not make a di↵erence for rapidly decreasing solution, if su�ciently
large periods are chosen. This is, for instance, possible for stationary localized solutions as the solitons
of the ZK equation. However, if radiation appears in non-stationary solutions, one would have to
choose prohibitively large computational domains to avoid the reappearance of emitted radiation (always
emitted in the negative x-direction) for positive values of x, which is in practice impossible for 3D
computations. The reappearence of radiation is acceptable as long as it has much smaller amplitudes
than the studied bulk of the solution.



Perturbation
ZAKHAROV-KUZNETSOV EQUATION IN 3D 7

Figure 2. ZK solution with u0 = 1.1Q: solution (projected onto the z = 0 plane)
at t = 12 (top left), the time dependence of the L

1 norm (top right), the di↵erence
between the solution and a rescaled soliton Qc with c = 1.3693 at t = 12 (bottom left),
the Fourier coe�cients at t = 12 depending on kx and ky (the solution is symmetric in
ky and kz, thus, we project onto kz = 0) (bottom right).

where ideally t
⇤ = 1 but for numerical purposes t

⇤ is the time when the L
1 norm levels o↵ (to

acceptable precision). The center of the shifted soliton can be easily identified (e.g., in MATLAB) by
getting the location coordinates of the local maximum. Both the scaling parameter and the shift is used
then to measure the di↵erence between the solution and the rescaled and shifted soliton at that time t

⇤

to check if that di↵erence is on the order of the radiation or less (we can then call the time t
⇤ as the

‘final state’ time for numerical investigations).
The L

1 norm of the solution with data u0 = 1.1Q is plotted in the top right of Fig. 2, saturating
at a slightly higher amplitude than the initial value. This seems to be typical: an initial condition that
is a multiple of the ground state with higher amplitude than the original soliton (� > 1) leads to a
rescaled version of Qc, defined in (7), with c > 1, and thus, faster moving in the x-direction than the
original soliton with speed c = 1. This can also be observed on the top left plot of Fig. 2, since the
location of the maximum is slightly shifted away from the origin in the positive x-direction (in other
words, its maximum does not stay at the origin in the co-moving frame (16) with vx = 1 and shifts
to the right). The di↵erence between the solution at t = 12 and a rescaled soliton Qc is plotted on

<latexit sha1_base64="V//qloL7UWgv9oPf925pZVSUkVc="></latexit>

u(x, y, z, 0) = 1.1 →Q



Gaussian perturbationZAKHAROV-KUZNETSOV EQUATION IN 3D 11

Figure 5. Snapshots of ZK solution with u0 as in (19), ↵ = 4, at t = 1.2, 4.8, 8.4. Left:
solutions projected onto z = 0. Right: 3D isocurves on the slices of the coordinate
planes.

Case (a): Gaussian initial data.



Outgoing radiation
12 C. KLEIN, S. ROUDENKO, AND N. STOILOV

Figure 6. Outgoing radiation in the asymmetric deformation of the initially perturbed
soliton u0 = Q + e

�(x2+y
2+4z2) at t = 0.12, 0.24, 0.36, 0.48. White lines: the expected

wedge of the radiation front (13) forming a total angle of ⇡/3.

We start here with initial data of the form

u(x, y, z, 0) = Ae
�(x2+y

2+z
2)
, A � 1, (20)

with su�ciently large A (so that the solution would not all disperse into radiation and could form
solitons). In Fig. 7 - 9 we discuss the solution with initial amplitude of the Gaussian A = 10.

As the solution evolves with time, a soliton appears to emerge. A snapshop of the solution at t = 12
is shown on the top left of Fig. 7, on the top right we track the L

1 norm, which stabilizes around time
t = 3, approximately the time when the soliton Qc forms. To check the shape of the solution against
the rescaled soliton Qc, we show the di↵erence between the solution and Qc on the bottom left of Fig.
7, noting that the resulting profile di↵ers from a soliton by less than 2%. This is roughly the size of
the radiation, which cannot escape to infinity (since we work on a periodic domain). Here, we use a
co-moving frame (16) with the speed vx = 2, which is slightly slower than the velocity of the resulting
soliton. The Fourier coe�cients of the solution at the terminal computational time t = 12 are plotted
on the bottom right of Fig. 7 and indicate the good numerical resolution of the solution.

To study further the soliton resolution in this example, we consider the initial stages of the time
evolution for these initial data more closely and see the formation of outgoing radiation.

The initial stages of the ZK time evolution are shown in Fig. 8. On the right there are the isocurves
of the solution in three coordinate planes, and as time increases one can clearly see that the radiation
is propagating in the negative direction of the x-axis, widening out in the y and z directions into a
cone-type region.

Since the solution is symmetric in the y and z coordinates, we suppress for a moment the z-coordinate,
and plot how the radiation develops in Fig. 9 for di↵erent times (t = 0.05, 0.15, 0.35 and 0.5). The
angle of the radiation is 300 from the negative x-axis (or the total opening angle is 600) as shown by
the black lines, which corresponds to the cone C in (12)-(13), i.e., 600 to the y or z-axis.



14 C. KLEIN, S. ROUDENKO, AND N. STOILOV

Figure 8. Snapshots of the ZK solution with Gaussian initial data u0 = 10 e�(x2+y
2+z

2)

at t = 0.05, 0.15, 0.35. Left: two dimensional projections onto z = 0. Right: 3D
isocurves on the slices of the coordinate planes.

and a rescaled soliton Qc on the bottom left of the same figure once more indicates that the solution
asymptotically approaches the soliton as its final state. The Fourier coe�cients of the solution at t = 4
are given on the bottom right of the same figure, showing that the solution is numerically well resolved.

<latexit sha1_base64="vNtdXFPgE+GY23fPW2erAMLm9Jg="></latexit>

u(x, y, z, 0) = 10 exp(→(x2 + y2 + z2))



Outgoing radiation
ZAKHAROV-KUZNETSOV EQUATION IN 3D 15

Figure 9. Detail view of the radiation developed in the ZK solution with Gaussian
initial data u0 = 10 e�(x2+y

2+z
2) at t = 0.05, 0.15, 0.35, 0.5. Two dimensional projections

onto z = 0 with black lines indicating the ⇡/3 total opening angle of the radiation cone.

Case (c): Wall-type initial data.

Instead of single maximum initial data, we consider a wall-like setup with the maximum value spread
out continuously over an interval (for instance �a  y + z  a), while still having a fast decay and
vanishing at infinity. For example, we take

u(x, y, z, 0) =

8
><

>:

Ae
�x

2 |y + z|  a

A e
�(x2+(y+z�a)8)

y + z > a

Ae
�(x2+(y+z+a)8)

y + z < �a.

(22)

Our goal here is to study the time evolution of initial data that are not single peaked, but have the
same maximum along a certain set, for example, an interval or a curve. In the wall-type data above
(22) we have the maximum elongated in the y and z directions, and in the x-direction the maximum
is still localized in a single point (at x = 0). The ZK evolution for such data with A = 3.6, a = 1.5 at
t = 0.05, 0.2, 0.35 is shown in Fig. 12.
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Figure 10. Snapshots of the ZK solution with flattened Gaussian initial data u0 =
5 e�(x2+0.05⇢2) at t = 0.4, 1.6, 2.8. Projections onto the plane z = 0 (left), the 3D
isocurves on the slices of the coordinate planes (right).

coe�cients of the solution at t = 4 are given on the bottom right of the same figure, showing that
the solution is numerically well resolved.

ZK in 3D, p=2
flattened 
Gaussian,
K, Roudenko, 
Stoilov 2021



ZK in 3D, p=2
wall type,
K, Roudenko, 
Stoilov 2021
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Figure 12. Snapshots of the ZK solution with the wall-type initial data (22) at
t = 0.05, 0.2, 0.35. Projections onto the plane z = 0 (left), the 3D contour plots on
the slices of the coordinate planes (right).

Continuing tracking the time evolution of this solution, we observe that eventually it forms one
single peak, which then moves along the positive x-axis. The corresponding solution at time t = 5 is
plotted on the top left of Fig. 16.
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Figure 14. Snapshots of the ZK solution with u0 = 20/(1 + x
2 + y

2 + z
2)10 at t = 0.05,

0.15, 0.25. Left: 2D projections onto z = 0 (note the changing scale for u). Right: 3D
isocurves on the slices of the coordinate planes.

since solitons have an exponential decay, their contribution to the locations that are far away from
their joint center of mass is zero within the numerical precision. Therefore, we consider initial data by
superimposing two one-soliton solutions that are su�ciently well separated.

<latexit sha1_base64="9XaGHHTnk9vIwLgJySbgFs1JZXM="></latexit>

u(x, y, z, 0) = 20/(1 + x2 + y2 + z2)10
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Figure 17. Head-on soliton interaction for initial data u0 = Q2(x+10, y, z)+Q(x, y, z)
at times t = 6.0 (before the interaction), t = 7.5, 10.5 (after the interaction), in a co-
moving frame with the soliton that is initially at the origin (i.e., vx = 1). Left: interaction
in 2D (projected onto the plane z = 0). Right: the corresponding 3D isocurves on the
slices of the coordinate planes.
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Figure 19. Snapshots of the ZK solution of strong soliton interactrion with u0 =
Q(x, y � a, z) + Q(x, y + a, z), a = ⇡L/8 at t = 1.5, 6.0, 10.5. Left: 2D projections
(onto z = 0 plane). Right: 3D contour plots on the slices of the coordinate planes.

The next example that we consider has initial data of two solitons next to each other shifted sym-
metrically in one of the non-leading axis, either in the y-axis or in the z-axis, for instance,

u(x, y, z, 0) = Q(x, y � a, z) +Q(x, y + a, z), a > 0. (28)



28 C. KLEIN, S. ROUDENKO, AND N. STOILOV

Figure 21. Snapshots of ZK solution with o↵-set initial data u0(x, y, z) = Q(x, y, z) +
Q(x+ a, y + a, z), a = 3/8⇡, at t = 1.5, 6.0, 15.0. Left: 2D projections onto the z-plane.
Right: 3D contour plots on the coordinate plane slices.

As an example, we take a =
3

8
⇡. We observe a quasi-elastic soliton interaction: some mass is

transferred to the front soliton, the number of solitons remain the same, though their characteristics



Outlook

✦ blow-up computation in 3D

✦ parallelization on GPUs

✦ mass critical blow-up as for generalised KdV?

✦ Supercritical blow-up?
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