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Korteweg-de Vries
equation

e Boussinesq 1877, Korteweg-de Vries 1895

U + 6uu, + Upypy = 0

e 1-soliton solution (solitary travelling wave):
T gsechQ(\/E(a: =l e —comst

e 1967: Gardener, Greene, Kruskal and Miura:
KdV equation is completely integrable



2-soliton solution



Soliton resolution

G 0 sech?z
(x — ex, t— et)



Blow-up

e generalized KAV equation

up + vPuy + €Uy, =0, pEN

(linear) and
Uy + vuPu, =0

(shocks) do not have blow-up of the L., norm of u

e for p < 4: global existence in time,
for p = 4: finite time blow-up (Martel, Merle, Raphagl: rescaled soliton),

for p > 4: finite time blow-up, no theory yet.



Theorem: Martel, Merle, Raphaél (2013)

Let 7.+ be the set given by
1 - — X0
= )\—OQ ( Ao )

and let A be the set of initial data u(x,0) = ug given by

e {u e H' with inf
)\0>0,ZCO€R

<oz*}
2

A= {Uo = @ + € with ||eg|| g < ap < 1 and / i I oo} el

r>1

where 0 < aqp < a* < 1 are universal constants, and let ug € A. If Elug] < 0,
then u(x,t) blows up at the finite time ¢* and u(t) € T« for t < t*. Then there
exist a constant (with respect to t) lp(ug) > 0 and functions L(t) and z,,(t)
such that for t — t*

1 T—Tm(t)\ . -
= =
and
= lo(t* —1)
with @ from (?7), where
L)~ (=), Bt~ zg(t*l— = (4)



Perturbed gKdV soliton,

n=4 wo = 0.99u 4,
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Perturbed solitary wave, n=4

ug = 1.01ugy
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Fitting to rescaled soliton

Martel, Merle, Raphaél 2012: seltsimilar blow-
up, blow-up profile dynamically rescaled

SOlit()n C. Klein and R. Peter, Numerical study of blow-up in solutions to generalized
Korteweg-de Vries equations, Physica D 304-305 (2015), 52-78
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oKdV, small dispersion

up = sech’z, e=0.1 o= /!




oKdV, small dispersion

ug = sech’z, e =0.01 !
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oKdV, small dispersion
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2D Zakharov-Kuznetsov K, Roudenko, Stoilov 2019

ur + (Au+uP)y =0, p=234.

@ Introduced by Zakharov and Kuznetsov in 1972 for 3D with p = 2:
@ Describes propagation of ionic-acoustic waves in uniformly magnetized plasma

@ Rigorous derivation of ZK from Euler-Poisson system with magnetic field in the long wave
limit (Lannes, Linares, Saut 13)

@ The amplitude equation for 2d long waves on the free surface of a thin film flowing down
the vertical plane with moderate surface tension and large viscosity (Melkonian and

Maslowe 89)

@ Derivation of ZK from Vlasov-Poisson system in a combined cold ions and long wave limit
(Han-Kwan 13)
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Transverse stability
K, Saut, Stoilov 2023

~+ KP (Zakharov (integrable approach), Rousset-
Tzvetkov): KP I line soliton stable for ¢ < ¢* (small line
solitons cannot lead to lumps)

« 7K, p=2 (Yamazaki): line soliton stable for
¢ < c* =4/(5L%) (L: period)

~& pno results appear to be known in L? critical and
supercritical cases



U

ubcritical case, subcritical velocity

FIGURE 2. Solution to the subcritical (p = 2) ZK for locally perturbed soliton initial
data (17) and sub-critical speed: on the left the solution for ¢t = 1 and on the right
the difference between the final state and a fitted line soliton (2).



Subcritical case, supercritical velocity




Soliton stability

Figure: top: Solution to the ZK equation u(x,y,0) = 1.1Q(x, y): on the left the solution for t = 15,
and on the right the L®° norm. Bottom: Solution for u(x, y,0) = 0.9Q(x, y): on the left the solution
for t = 10, and on the right the L*° norm.
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Asymptotic profile

Figure: Difference of the solution to the ZK equation for the initial data u(x,y,0) = AQ(x,y) and a
fitted rescaled soliton : on the left A = 0.9, on the right for A = 1.1.
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Soliton interaction (on the x-axis)




Soliton

Interactions
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Figure: Solution to the ZK equation for initial data being the superposition of a soliton with ¢ = 2

centered at x = —10 and a soliton with ¢ = 1 centered at the origin on the x axis for various times on
N.M. Stoilov (IMB)

the left, and a close-up of the bottom right figure of the previous figure on the right
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Soliton interaction (displaced)




Soliton interaction (displaced)




10 exp(—x?) x| < 1.5
u(x,y,0) = ¢ 10exp(—x* — (y — 1.5)®) x> 1.5
10exp(—x* — (y +1.5)%) x < —15
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w(x,y,0) = 25exp(—z* — 0.05y%)
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K, Roudenko, Stoilov, 2019 ZK With P =3 L((X,y,_O) — 1._]. Q(X,y)

10 -




[ > critical case.

The L* norm of the solution as well as the L? norm of u, indicate a blow-up.
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Figure: Solution to the ZK equation for the initial data u(x,y,0) = 1.1Q(x, y): on the left the L*°
norm of the solution, on the right the L2 norm of uy in dependence of time.
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Blow-up behaviour
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Figure: Fitting of various norms of the solution to the ZK equation for the initial data
u(x,y,0) =1.1Q(x,y) to Ing(t) ~ aln(t* — t) + b: on the left the L> norm of the solution, on the
right the L2 norm of uy: in red the fitted line. We get a = —0.5185, b= —2.0124 and t* = 0.5646,
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[, critical case: Conjecture

Conjecture

If u(x,y,0) € S(R?) is such that ||u(x,y,0)|]> < || Q]
Is dispersed.

If u(x,y,0) € S(R?) is such that ||u(x, y,0)||2 > ||Q||2, then the solution has a blow-up in
finite time t = t* such that for t — t*

i,y 1) — - Q (X_X’”(t)) s T € L2

>, then the solution to the ZK equation

L(t) L(t)
and
1
luellz ~ 7
where 1
L(t) ~vVt* —t, Xm(t) ~ P )



Zakharov-Kuznetsov in 3D

3D equation
Ut = (u:m: S Uqgyy T Uyy T up)a? — Oa

p = 2: subcritical
= = FCritical
p > 7/3: supercritical

solitary wave: u(z,y, z,t) = Q(x — ct,y, 2)

_AR3Q+Q_Q2 ‘:07

NLS solitary wave in 3D



Ground state

FIGURE 1. The ground state solution to (8). Left: plot of ) with z = 0. Right: 3D
contour plots of () on the slices of the coordinate planes. The color bar indicates the
magnitude of the solution.



Perturbation

e D=1 %)

12

10



(Gausslan perturbation




Outgoing radiation
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Lo H N W B~ Wwm

Lo = N W B~ um

Lo H N W B~ WU,

u(x,y,2,0) =10 exp(—(:zﬁ2 = 22))
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FIGURE 9. Detail view of the radiation developed in the ZK solution with Gaussian
initial data ug = 10 e~ @ +¥"+2%) at + = 0.05, 0.15, 0.35, 0.5. T'wo dimensional projections
onto z = 0 with black lines indicating the /3 total opening angle of the radiation cone.
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Outlook

blow-up computation in 3D
parallelization on GPUs
mass critical blow-up as for generalised KdV?

Supercritical blow-up?
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