Carnegie Mellon

K). Electrical & Computer
€Y ENGINEERING

SPIRAL:

Enabling Faster FFTs on Al
Accelerators

Naifeng Zhang

Department of Electrical and Computer Engineering

Carnegie Mellon University
https://naifeng.github.io/

Joint work with the SPIRAL team at CMU, UIUC, Drexel, SpiralGen, Inc.,
and collaborators at LBL, ORNL, and LANL
Slides borrowed from Franz Franchetti

This work was supported by DARPA, DOE, ONR, NSF, Intel, Mercury, SRC, and Nvidia

https://naifeng.github.io/

Carnegie Mellon

Q reREERNE

Algorithms and Mathematics: 2,500+ Years

ey
i 4
& g %
q §j‘;+§§?.
FEE |
thes
:FVH 15| | B m—
AR 2 AR e
e sssamp e
E % ‘ | T‘_WM'
. if% |2 e
| ’l"ll 1M ,%) R 52
, _

Fast Fourier Transform

265 An Algorithm for the Machine Calculation of
Complex Fourier Series

NACHLASS

THEORIA INTERPOLATIONIS

METHODO NOVA TRACTATA.

6
s

o uw!:.rw!w':x' o
¢ «.um (u.yh/ u’{\)‘/‘-ﬂ" -
UJ(}J“U\)“J('/] v
\/wwwuftfﬂ)’“
o~__.;l.-_,\.so

] G ATl ahalias e
m%{]@

,.ul’u.n/,gu_.,g Ui |

a
O ESTEN

w XG) = BABWA =00, N,

yhors the given Fourir cocicients 4 A(K) are complex and W is the principal

atque n wumers integer quicungue

FFT in Matrix Form
Van Loan, 1992

ita ut summa quaesita, quam

mus fiat = g -68°--7 et

Fast Eourier Transform
C.F. Gauss, 1805

Cooley & Tukey, 1965

Carnegie Mellon

(() EIectncaI&Com uter
ENGlNEER NG

Moore’s Law in Practice

1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 10°, tera (T) = 1012, peta (P) = 10?>, exa (E) = 10*8

In 2025...

Cell phone Laptop Workstation Al Server #1 supercomputer
15 Gflop/s 120 Gflop/s 32 Tflop/s (2xcpru) 3.2 Pflop/s (72xGcpu) 2.7 Eflop/s

...would have been the #1 supercomputer back in...

Cray Y-MP C90 CM-5/1024 Earth Simulator Tianhe-1A
16 Gflop/s 131 Gflop/s 41 Tflop/s 4.7 Pflop/s
1991 1993 2002 2010

Carnegie Mellon_

But: Language Adoption is Slow

Big Data and ML Frameworks

Programming languages
= 1953: Fortran

= 1973: C

= 1985: C++

= 1997: OpenMP

= 2007: CUDA

= 2009: OpenCL

Performance libraries
= 1979: BLAS

= 1992: LAPACK

= 1994: MPI

= 1995: ScaLAPACK

= 1995: PETSc

= 1997: FFTW

Productivity/scripting languages
= 1987: Perl

= 1989: Python

= 1993: Ruby

= 1995: Java

= 2000: CH

2004: MapReduce
2005: Hadoop
2009: Spark

2015: TensorFlow
2016: PyTorch

Symbolic and Numerical PSEs

Numerical Mathematics libraries

= 2003: Intel Math Kernel Library

1958: LISP

1972: Prolog

1984: Matlab
1982: Maple

1988: Mathematica
1990: Haskell
1993: R

1970: IMSL
1971: NAG
2001: GNU Scientific Library

Carnegie Mellon

(). Electrical & Computer
€Y ENGINEERING

Explosive Growth of Source Code

Windows 10, 2015
60M LOC

File Options Window Help

1984 l &

MS-DOS2.1 [l o

50k LOC
BD%MS
- - .

cessories Administrative
Tools

Carnegie Mellon

QO EREiNeeRne

SPIRAL: Al for High Performance Code

Traditionally SPIRAL Approach

&Il B High performance library

High performance library
LU o htimized for given platform

optimized for given platform

Carnegie Mellon

A ENGINEERRIG
SPIRAL’s History: The Long Arc of Math in CS

Proceedings IEEE

Fr ation to

- oYt o
DA . (‘JJ & DARPA/Defense Sciences Office
// Applied & Computational Mathematics Program
Origins

puctal foves o
PROGRAM GENERATION, OPTIMIZATION,
AND PLATFORM ADAPTATION

Prepared for DARPA/DSO by Anna Tsao*

1980-2020

Distribution Statement A (Approved for Public Release. Distribution Unlimited) 1

Encyclopedia of

Parallel Computing

Project ongoing since 1998, core idea dates back to 1968

Carnegie Mellon

(() EIectrlcaI&Com uter
ENGINEER NG

Outline

" Introduction
= Specifying Computation
= Achieving Performance Portability

= Case Study: FFTs on Al Accelerators

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Pischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

Carnegie Mellon

A ENGINEERRIG
SPIRAL: Al for Performance Engineering

Given:
= Mathematical problem specification
core mathematics does not change

= Target computer platform
varies greatly, new platforms introduced often

Wanted:
= Very good implementation of specification on platform

= Proof of correctness

sssssssssssssss

K void ££t64 (double *Y, double *X) {
20
2 s5674 = _mm256_permute2f128 pd(s5672, s5673, (0) | ((2) << 4));
s s5675 = _mm256_permute2f128 pd(s5672, s5673, (1) | ((3) << 4))
H) s5676 = _mm256_unpacklo_pd(s5674, s5675);
= s5677 = _mm256_unpackhi pd(s5674, s5675);
o 25678 = ¥ ((a3736 4 16)) performance
ot s5679 = *((a3738 + 17));
. s5680 = _mm256_permute2£128 pd(s5678, s5679, (0) | ((2) << 4)); +
s5681 = mm256_permute2f128 pd(s5678, s5679, (1) | ((3) << 4));
s5682 = mm256_unpacklo_pd(s5680, s5681);
s5683 = _mm256_unpackhi_pd(s5680, s5681);
t5735 = _mm256_add pd(s5676, s5682);
t5736 = _mm256_add pd(s5677, s5683); QED-

t5737 = _mm256_add pd(s5670, t5735);

t5738 = _mm256_add pd(s5671, t5736);
intE|’ t5739 = _mm256_sub_pd(s5670, _mm256_mul_ pd(_mm_vbroadcast_sd(&(C22)), t5735));
‘ t5740 = _mm256_sub_pd(s5671, _mm256_mul_ pd(_mm_vbroadcast_sd(&(C22)), t5736));
t5741 = _mm256_mul_pd(_mm_vbroadcast_sd(&(C23)), _mm256_sub pd(s5677, s5683));

4th Gen t5742 = _mm256_mul_pd(_mm_vbroadcast_sd(&(C23)), _mm256_sub pd(s5676, s5682))

Intel® Core™ i7

Carnegie Mellon

K). Electrical & Computer
€Y ENGINEERING

OL Operators

Definition
= Operator: Multiple vectors — Multiple vectors

= Stateless
= Higher-dimensional data is linearized
= Operators are potentially nonlinear

CMO % ... x C%—-1 — CNo x ... x CNe-1

(X07X17 . 7Xk—1) — M(X07X17 SR 7X]€—1)

M :

Example: Scalar product

< ,. > RPxR" =R xT
n—1 -

1=0

Carnegie Mellon

Electrical & Computer

. O ERENERRNE

Breaking Down Operators into Expressions

m Application specific: Safety Distance as Rewrite Rule
SafeDisty A pe (.- .) — (P[m, (ag,a1,a2)](.) < d2.(., .))(., 0
With ao=2%, a1=Y+¢(3+1), ax=(#+1)(5:2+V)

Problem specification: hand-developed or automatically produced

m One-time effort: mathematical library

de () = || |% o (— s Element
() = e o (5 .

(o)n — Pointwise, ., (a.p)saohy ¢ € {+: — AV, }

I-[[5e — Reduction,, (; v)smax(|al,[b])

< .,. >p— Reduction,, «, p)sq+b © POINtWISE, 1 (4 1) yab

Plz, (ag,...,an)] =2< (ag,...,an),.> o(:vi)n

(z')n — Induction,, (, 1) sab.1

Library of well-known identities expressed in OL

Carnegie Mellon

Loop and Code Level Rule System
Translation and Optimization

Mathematical Loop Abstraction

m Selection and embedding operator: gather and scatter

e ()RR
(xi)i=0,...n—1 — ;

eP(): Rt = R®

(z) — (0,...,0 0,...,0)

L
ith

m lterative operations: /oop

n—1
L] : (D=R"—=(D—R)
i=0

A — (x — Apg(z) L -+ U An—l(w))

with Ll € {Z, V, A, [T, min, max,...}

()" O
N
eﬁ(x

m Atomic operators: nonlinear scalar functions

Atomicf ‘R 5 RY
(@) = (f(2))

Abstract Code

Code objects
= Values and types

= Arithmetic operations
= Logic operations
= Constants, arrays and scalar variables

= Assignments and control flow

Properties: at the same time
= Program = (abstract syntax) tree

= Represents program in restricted C

= OL operator over real numbers and
machine numbers (floating-point)

= Pure functional interpretation
= Representslambda expression

—_— -
Dynamic Window Monitor
let(

i3 := var("i3", TInt), i5 := var("i5", TInt),

w2 := var("w2", TBool), wl := var("wl", T_Real(64)),

s8 := var , T_Real(64)), s7 := var("s7", T_Real(64)),

s6 := var Real(64)), s5 := var("s5", T Real(64)),
s4 := var("s4", T Real(64)), sl := var("sl", T Real(64)),
g4 := var("q4", T Real(64)), g3 := var("g3", T_Real(64)),
D := var("D", TPtr(T_Real(64)).aligned([16, 01)),
X := var("X", TPtr(T_Real(64)) .aligned([16, 0])),

func(TInt, "dwmonitor", [X, D I,
decl([q3, q4, sl, s4, s5, s6, s7, s8, wl, w2],
chain(
assign(s5, V(0.0)),
assign(s8, nth(X, Vv(0))),
assign(s7, V(1.0)),
loop(i5, [0..2],
chain(
assign(s4, mul(s7, nth(D, i5))),
assign(s5, add(s5, s4)),
assign(s7, mul(s7, s8))
)
)0
assign(sl, V(0.0)),
loop(i3, [0..1],
chain(
assign(q3, nth(X, add(i3, V(1)))),
assign(q4, nth(X, add(V(3), i3))),
assign(wl, sub(q3, q4)),

m Translating Basic OL into Z-OL map

O BN

loop

n=1 _ —
Pointwisenﬁfi—>Z(e?oAtomicfio(ef)T) —_—
i=0
- —
n—1 f()
| . 22 =
Reductlonn,(ayb)Ha+b—>g:o(e?) .
- —
1O
m Optimizing Basic OL/Z-OL
Pointwise,, 7, o Pointwise,,g, — Pointwise, 1.0, map, map, fused map
‘ v —_ - — - —
Pointwisen,floe{bHei,,oPointwiseij _— > —_— —
—_ - — - —
—_ - — - - —
- - — - —
- - — - —
9() f(O) (fop)()

Rule Based Compiler

Compilation rules: recursive descent

Code (y = (Ao B)(:c)) - {decl(t), Code (t = B(z)), Code (y = A(t))}

Code (y = ("z—:l Ai> (m)) — {y :=0,for(i = 0.n — 1) Code (y—i— = Al(m))}
i=0

1
<
=)
Il
8
=

Code (y =) (2)

)
Code (y = e?(z)) — {y =0,y[i] := x[O]}
) — y[0] := f(x[s])

Code (y = Atomicy(z)

Cleanup rules: term rewriting

0O

chain (
assign(Y, V(0.0),
loop(il, [0..5],
assign(nth(y, il),
f(nth(X, i1)))

assign(s6, cond(geqg(wl, V(0)), wl, neg(wl))),
assign(sl,))

)
)

creturn (w2)

cond (geq(sl, s6), sl, s6!

assign(w2, geq(si, s5)),

chain(a, chain(b))
decl (D, decl(E, c))
loop(i, decl(D, c))

— chain([a, b])
— decl([D, E], c)
— decl (D, loop(i, c))

chain(a, decl (D, b)) > decl (D, chain([a, b]l))

Carnegie Mellon

K). Electrical & Computer
€Y ENGINEERING

Putting it Together: One Big Rule System

Mathematical specification

OL specification SafeDisty, 4, () = (Ple, (a0, 01,02)1() < d3()) ()

with ap=4, a1=%+g(§+1>, aQ:(%-H) (§52+sv)
Expansion + backtracking l
OL (dataflow)
expression
Recursive descent l

Z-OL (loop) expression

Confluent term rewriting l
Optimized 2Z-OL
expression
Recursive descent l

Final code

AbStraCt COde int dwmonitor(float *X, double *D) {
_ m128d ul, u2, u3, u4, u5, u6, u7, u8 , x1, x10, x13, x14, x17

int wl;
Confluent term rewriting l unsigned xm = mm getcsr();
mm_setcsr(_xm & Oxffff0000 | 0x0000d4fcO) ;

Optimized abstract u5 = _mm_setl pd(0.0);
u2 = mm cvtps pd(_mm addsub ps(mm setl ps(FLT MIN), mm setl |
code ul = mm_set pd(1.0, (-1.0));
. for (int i5 = 0; i5 <= 2; ib++) {
Recursive descent l x6 = mm addsub pd(_mm setl pd((DBL _MIN + DBL MIN)), mm lo
X1 = mm addsub pd(_mm setl pd(0.0), ul);
X2 = mm mul pd(xl, x6);
Ccode x3 = mm mul pd(_mm shuffle pd(xl, x1, MM SHUFFLE2(0, 1)),
x4 = mm sub pd(mm setl pd(0.0), mm min pd(x3, x2));
u3 = mm add pd(mm max pd(mm shuffle pd(x4, x4, MM SHUFF.

Carnegie Mellon

(() EIectrlcaI&Com uter
ENGINEER NG

Inspiration: Symbolic Integration

= Rule based Al system
basic functions, substitution

= May not succeed
not all expressions can be
symbolically integrated

= Arbitrarily extensible
define new functions as integrals

I'(.), distributions, Lebesgue integral

= Semantics preserving
rule chain = formal proof

= Automation
Mathematica, Maple

Table of Integrals
R 3
BASIC FORMS
1 J‘,\-"d.x-:;l_l-"" : !..‘\l’)l l Ol 5
o INTEGRALS, SERIES,
B [rtemios \ND PRODUCTS
(&) Iud\‘:m'ﬂjwbl SE\ € >

TN

4) Im.r)r’t x)dx =u(x)wWx) ~ JN)’ (x)dx

RATIONAL FUNCTIONS

1 1
(5) J'—d.\-:—lnm.ub]
ax+h a

wore [1 ay Wolfram
a? Cos[t]2+ b2 Sin[t]? Mathematica

v .
| b2
21‘.|' a—z T
Oul[31]- ‘bz)

n 1
In{33]:= J: - - - - at
al (ent.e“nt)z + b2 ent-e'nt)z
2

21

Oul[33]- O

Carnegie Mellon

(). Electrical & Computer
€Y ENGINEERING

Outline

" Introduction
= Specifying Computation
= Achieving Performance Portability

= Case Study: FFTs on Al Accelerators

M. Pischel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, N. Rizzolo:

SPIRAL: Code Generation for DSP Transforms
Proceedings of the IEEE Special Issue on "Program Generation, Optimization, and Adaptation," Vol. 93, No. 2, 2005, pages 232-275.

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Pischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

http://users.ece.cmu.edu/~franzf/papers/si-spiral.pdf
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Today’s Computing Landscape

1 Gflop/s = one billion floating-point operations (additions or multiplications) per second

Intel Xeon 6980P

16 Tflop/s, 500 W

128 cores, 2 — 3.9 GHz
2-way—16-way AVX-512

Snapdragon 8+ Genl
15 Gflop/s, 2 W
8 cores, 3.2 GHz
A730 GPU, Hexagon DSP

IBM POWER10
7.5 Tflop/s, 130 W
30 cores, 4 GHz
4-way VSX-3, MMA

Nvidia H200

34 Tflop/s, 700 W

16,896 cores, 1.41 GHz

2 Pflop/s FP16 tensor cores

Cerebras WSE3
12.5 Pflop/s 20kwW
900,000 cores

Dell PowerEdge R960
30 Tflop/s, 8 TB, 1.5kW
4x 60 cores, 1.9—-3.5 GHz
2-way — 16-way AVX512

Google Willow
105 qubits

El Capitan

2.7 Eflop/s, 30MW

43k 24-core CPUs + 43k GPUs
#1in Top500

Carnegie Mellon

«) EIectrlcaI&Com uter
ENGINEERING

Platform-Aware Formal Program Synthesis

Model: common abstraction
= spaces of matching formulas

abstraction abstraction

ON

)L

search
N\

algorithm

} deflnes rewriting

pick

architecture
space

space

(DFT2RI)TE (I (.....

Architectural parameter: et Kernel:
Vector length, btz diodn problem size,
algorithm choice

H#processors, ...

Carnegie Mellon

(). EIectncaI&Com uter
€Y ENGINEERING

Some Application Domains in OL

° ° °
Linear Transforms Software Defined Radio

DFT, — (DFT;Q®Ly) Th (1, @DFTy)LE, n=km

DFT, — Pu(DFT,DFT»)Qn, n=km, gcd(k,m)=1 010001 [[/s]3\[o) [V hd1e)3r-1F 111000011001 1100 / 111001011010 1100 Viterbi 010001

DFT, — R} (I;®DFT, 1)Dy(I; ®DFT,_1)Rp, p prime encoder decoder
DCT-3, — (Im®Jm) L (DCT-3/,(1/4) ® DCT-3,,(3/4))

Im 0® —Jp—1 F SK-1
'(F2®Im)[%(11 @;"Im)}, n=2m Frr— 1 ((IQK 2®; Br— m)LzK 2)

DCT-4, — S8,DCT-2,diadg<yn(1/(2c0s((2k + 1)7/4n))) =1

IMDCTQm — (Jm Sl dlmd Jm) <<|:_1:| ® Im> D (:1:| ® Im>> Jom DCT—42m

F
¢ Frpv—]I ((IQK 2/1/®JlL "Bf_ zgl) (LQK 2/ ®Iu)>
=1
WHT,, — _H1(12k1+"‘+ki—1 @ WHT, ®12ki+1+'“+kt)7 k=1Fky+ -+ k
1= .
DFT> F> L. U = ml.ndU(ﬂ-A + /8A—>U7 7B + 6B—>U)
DCT-2, diag(1,1/v2) F» Yy = ming, (ma+ Bav, 7B+ B_v)

!

!

!

PDEs/HPC Simulations Synthetic Aperture Radar (SAR)
B —
o=

— SARL«m—nxn — DFToxnolnterprym—nxn
I-h

DFT,xn (DFT,®I,) o (I, ® DFTy)
Interprsxmonxn — {Interpi_, ®;In) o (I ®; Interp,,)

!

P:R* >R n—2
Interp,s — @ InterpSeg;. | @ InterpSegPrunedy ¢
S Q 1 » \ ’
Cb(x): = +O<T> as ||$H — 00 i—0
e TETIRANTET . 1
InterpSeg;, — G"Jﬁ'"" o iPrunedDF T, _qyn © (—) oDFT,
Q= [pd¥ n
D

Carnegie Mellon

O BN

Formal Approach for all Types of Parallelism

Multithreading (Multicore)
Vector SIMD (SSE, VIMIX/Altivec,...)
Message Passing (Clusters, MIPP)
Streaming/multibuffering (Cell)
Graphics Processors (GPUs)
Gate-level parallelism (FPGA)

HW/SW partitioning (CPU + FPGA)

Ip ®||A,un7 L%n@) I,u

ARL, L3V, L2, LY
ISa ISa 1Sa

2 _

@) An, Ly @12
all-to-all

n—1

H A, ARy, Pn® Qu
1=0

n—lir

H A I RA, LZL

, .

1=0 bram

A A A A
1 2 3, 4
fpga fpga fpga fpga

Carnegie Mellon

K). Electrical & Computer
€Y ENGINEERING

Modeling Hardware: Base Cases

= Hardware abstraction: shared cache with cache lines

» flka—ﬂg
smp(p,u)

= Tensor product: embarrassingly parallel operator

COrc g corc

= - = Processor O
— A
y T (Ip ®A> (x) = - EProcessorZ
= - B Processor 3
X y

= Permutation: problematic; may produce false sharing

— L8(x —
y = La(x) —
X y

Carnegie Mellon

al& Co
() ENGINERRNE

Example Program Transformation Rule Set

48 - 4 B
smp(p,pu) smp(p,u) smp(p,u)

Am @Iy = (L7 @1,) (L ®(Am ®1,)) (L @1,)

smp(p,u) smp(p,ut)
(Ip 2 Lmn/p) (Lpn R Im/p)
Lmn . smp(p) smp(p,u)
smp(p,u) \(m_~n/p)A($ >4 Recursive rules
L smp(p,p) smp(p,u)

Im ®An, — Ip @ (Ly,/p @An)
smp(p,u)
(P®IL,) — (P ®1,/,)®1,

B rul
) ase case rules

Carnegie Mellon

(() EIectncaI&Com uter
ENGINEER NG

Autotuning in Constraint Solution Space

Expansion + backtracking

DFTg

AVX 2-way h N—— ﬁ DFTg

_Complex double AVX(2-way C) ‘
Base cases Transformation rules Breakdown rules 5 Olt oop)
AR T (I @A™ ML (1, ®LY (A" 8 1)) DFT, —(DF Ty @ L) T expression

53« @ ©1,) (Im, @ DFT,,) LT ‘
vec(2) L} >(L®L)(4,,0L) DFT, —Fop Optimized 5-OL

TZ‘L’I‘L Amxm®1n _)(Amxm®1n/y)®1y .

~—— expression
vec(2) ‘

Abstract code

V

Optimized abstract

code
}
((F2‘8'12)T3(12®F2)L‘21'§'12) Ig, (I2® l’; (F2°°I2))(5512) C code

vec(2) vec(2)

Carnegie Mellon

(() EIectncaI&Com uter
ENGINEER NG

Translating an OL Expression Into Code

Constraint Solver Input: DFTg

Vv OL specification

AVX(2-way C)
Output - Expansion + backtracking
Ruletree, expanded into
OL ExpreSSion: Recursive descent
& 4 43 8 ® L3 2 43 3-OL (I
((F201)T3(L @F2)L3E 2) T5 (L® L3 (F28L))(L3GL) (Ioop)

vec(2) expression
Confluent term rewritingl

vec(2)
-OL: ’v
z1

1 Optimized 2-OL
-) () & expression
. / ' , ' >
(Z (S’?:";(J)2F2I\Iapx»—m2’+1 2@()2) 2 (S()221F2G23),) |812- - .
j=0 4 j=0 Recursive descent ‘
Abstract code
c Code: ‘ Confluent term rewritingl
void dft8(Complex double *Y, Complex double *X) { Optimized abstract
__m256d s38, s39, s40, s41,... code (icode)
__m256d *al7, *al8; .
al7 = ((_m256d *) X); Recursive descent
s38 = *(al7);
s39 = *((al7 + 2));
t38 = mm256_add pd(s38, s39);
t39 = mm256 _sub pd(s38, s39);

s52 = mm256_sub pd(s45, s50);
*((al8 + 3)) = s52;

Carnegie Mellon

al& Co
() ENGINERRNE

Symbolic Verification for Linear Operators

m Linear operator = matrix-vector product

Algorithm = matrix factorization

S 1 P
11 -1 |1 - -1
A N A I T B I

[1
[— [— [— [—
I

1 1 1]t - 1 -Yr . -

A1

1 1 T

. j_.

1 1

1 -1 -

DFT, = (DFTQ 1) T4, @ DFT,) L3

m Linear operator = matrix-vector product

Program = matrix-vector product

1 1 1]
g -1 =3|.
-1 1 -1

-3 -1 7|

R R R
=)

= ? DFT4([0,1,0,0])

I
vJ

Symbolic evaluation and symbolic execution establishes correctness

Carnegie Mellon

(). EIectrlcaI&Com uter
€Y ENGINEERING

Outline

" Introduction
= Specifying Computation
= Achieving Performance Portability

= Case Study: FFTs on Al Accelerators

S. Rao: LibraryX: A Framework for Cross-Library-Call Optimization, Ph.D. Thesis, 2025

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van
Straalen, P. Colella: FFTX and SpectralPack: A First Look, Workshop on Parallel Fast Fourier Transforms (PFFT).

Carnegie Mellon

Performance vs. Precision

(() EIectncaI&Com uter
ENGINEER NG

- FP16 FP32 FP64

Q

n 105_

3 104, General-Purpose General-Purpose Domain-Specific
- Processor Accelerator Accelerator

Q 103_

(ol

S 0

— 102

£ o

— 10 | =

3 100 | | |

= 10Y E

(@) f | |

S 10711 |

o) | : |

c 10-2 |

Y ‘ :

© 1073 = . — | . .

CC,‘l_) Intel i7- Intel Xeon w7- NVIDIA RTX NVIDIA AWS Cerebras

7 10700(AVX2) 3555(AVX-512) 4090 A100 Trainium-1 WSE-2

Increasing Architectural Specialization

Carnegie Mellon

A ENGINEERRIG
FP64 Emulation Using Integer Units

#define fp64int64_add(_ce, _cm, _ae, _am, _be, bm){ \
__intl6_t _diff0 = _subw((_ae), (_be)); \
__intlé_t diffl = _subw((be), (_ae)); \

_Bool _flag = _cmplsw((_ae), (_be)); \
__intl6_t _shamt = _selw(_flag, _diffl, _diff0); \
__int64_t sm = _selq(_flag, (_am), (_bm)); \

__int64_t _km = _selq(_flag, (_bm), (_am)); \
_sm = _sarq(_sm, _shamt); \
_sm = _selq(_cmplw(_shamt, 64), _sm, 0); \
_Bool _cmc; ___uint64_t _sum; \
_addgc(_sum, _cmc, _km, _sm); \
_Bool _ovf = _sltq(_andqg(_xorqg(_sm, _sum), \
_xorq(_km, _sum)), 0); \
(_cm) = _selq(_ovf, _shrqdq((uinté4_t) cmc, _sum, 1), _sum); \
(_ce) = _caddw(_selw(_flag, (_be), (_ae)), 1, _ovf); \

Nvidia 5090 Cerebras WSE3 Amazon Trainium
“compatibility-only” FP64 no FP64 no FP64

Carnegie Mellon

Electrical & Computer

L ENGINEERIE

First Amazon Trainium FP64 Results

10%4 SoftFloat on Trn1.32 all-engine
SoftFloat on Trn1.32 all-engine + PISA
. Intel i7 FPU
o
©
g 1024
o
—
(@)
o
£
E 101_
Q
£
)
C
&
100_

2'10 2|11 2|12 2|13 2|14 2|15 2l16 2|17 2|18 2'19 2|20
DFT8 Batch Size

Amazon Trainium
no FP64

Carnegie Mellon

Electrical & Com uter

A ENGINEERE

LibraryX: SPIRAL as Active Library Backend

Other C/C++ Code Paradigm
Plug-In:
GPU

: Extensible platform
Paradigm .
Plug-In: and programming
Shared memory model definitions

FFTX call site

fftx plan(.) SP;RAL rr||1od.ule: deoff Core system:
fftx execute (.. Code Synt esis, trade-oftts SPIRAL engine

reconfiguration, statistics

Automatically

ArudeEEllsl ‘ Code module 1 Code module 2 generated tuned
)

fftx plan(..)
— Pruned FFT I/O Pruned components and

fftx execute (..
ot < AL Convolution special cases

CUDA

LibraryX and C++/Python/Julia SPL API enable SPIRAL as Agent for GenAl

Carnegie Mellon

O ERGNEERVE
Real Science Applications + Other Motifs

GX/Fusion

3D Bracket Operator

P3M Method (MLC):
Cabana / Kokkos + FFTX on a GPU

bbbbbbbbb

(U. of Md, CMU, LBNL)) 1.71e-04
— 8e-5

— 6e-5

4e-5
[2e-5
0.0e+00

3D Hill’s Vortex (ORNL, Stanford, LBNL)

Structured Grids: Proto

DB: data_4780.hdf5
Time:821327 |

Vorticity Magnitude

)
xxxxxxxxxxxxxx

eeeeeeeeeeee

Solar wind (UAH, GSU, LBNL)

Carnegie Mellon

A ENGINEERING

SPIRAL: Al for High Performance Code

Algorithms Correctness

| Tools for Practical
I Software Verification

int dwmonitor (float *X, double *D) {
_ ml28d ul, u2, u3, u4, u5, u6, u7, us,...

unsigned _xm = mm_getcsr() ;
_mm_setcsr(_xm & OxX£f£££0000 | 0x0000dfcO) ;
U5 = mm_setl pd(0.0); performance

u2 mm_cvtps pd(_mm_addsub_ps(

_mm_s;tl_ps(E'LT_MIN) 0 _mm_setl_ps(X[O]))); I
ul = _mm_set_pd(1.0, (=1.0)); mﬂmﬂ
for(int i5 = 0; i5 <= 2; i5++) {

x6 = mm_addsub_pd(_mm_setl pd((DBL MIN QED'
+DBL_MIN)), _mm_loaddup pd(&(D[i5]))) ;

xl = _mm_addsub_pd (_mm_setl_pd(0.0) , ul) ;
x2 = mm mul pd(xl, x6);
Elementary
130 Linear Algebra
... N
wewa e ®
Convolution via FFT

» ﬁgs
%
%
(i) = (G =p)(7)

Hardware

Carnegie Mellon

Ky EIectncaI&Computer
€Y ENGINEERING

PPPPPPP

<2 Spiral -] X

m Open Source SPIRAL available
m non-viral license (BSD)
m Commercial support via SpiralGen, Inc.

m www.spiral.net, www.spiralgen.com

m Developed over almost 25 years

m Ongoing open source development
DOE Aid4Science, SciDAC, Base

m FFTX 1.0 release
www.spiral.net/software/fftx.html

PROGRAM CENERATION OPTIMIZATION,
AND PLATFORM ADAPTATION

Encyclopedia of
Parallel Computing

m SPIRAL Software Foundation
Next step in the evolution, ETA 2026

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson, M. Pischel, J. C. Hoe, J. M. F. Moura:
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018.
Special Issue on From High Level Specification to High Performance Code

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen, P.
Colella: FFTX and SpectralPack: A First Look, IEEE International Conference on High Performance Computing, Data, and Analytics, 2018

http://www.spiral.net/
http://www.spiral.net/
http://www.spiralgen.com/
http://www.spiral.net/software/fftx.html
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

