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FFT in Matrix Form
Van Loan, 1992

Equations of Motion
Newton, 1687

FFT Algorithm
Cooley & Tukey, 1965

Fast Fourier Transform
C.F. Gauss, 1805

Bernoulli Numbers
Kōwa, 1712

Algebra
al-Khwārizmī, 830

Square roots, value of Pi
Baudhāyan, 800 BC

Geometry
Euclid, 300 BC

Gaussian Elimination
unknown, 179 AD 

Fast Fourier Transform

Algorithms and Mathematics: 2,500+ Years
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Moore’s Law in Practice
1 flop/s = one floating-point operation (addition or multiplication) per second
mega (M) = 106, giga (G) = 109, tera (T) = 1012, peta (P) = 1015, exa (E) = 1018

In 2025…

…would have been the #1 supercomputer back in…

Cray Y-MP C90
16 Gflop/s
1991

CM-5/1024
131 Gflop/s
1993

Earth Simulator
41 Tflop/s
2002

Tianhe-1A
4.7 Pflop/s
2010

#1 supercomputer
2.7 Eflop/s

Workstation
32 Tflop/s (2xCPU) 

Laptop
120 Gflop/s

Cell phone
15 Gflop/s

AI Server
3.2 Pflop/s (72xGPU) 

Gordon Moore
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But: Language Adoption is Slow
Programming languages
§ 1953: Fortran
§ 1973: C
§ 1985: C++
§ 1997: OpenMP
§ 2007: CUDA
§ 2009: OpenCL
Performance libraries
§ 1979: BLAS
§ 1992: LAPACK
§ 1994: MPI
§ 1995: ScaLAPACK
§ 1995: PETSc
§ 1997: FFTW
Productivity/scripting languages
§ 1987: Perl
§ 1989: Python
§ 1993: Ruby
§ 1995: Java
§ 2000: C#

Big Data and ML Frameworks
§ 2004: MapReduce
§ 2005: Hadoop
§ 2009: Spark
§ 2015: TensorFlow
§ 2016: PyTorch
Symbolic and Numerical PSEs
§ 1958: LISP
§ 1972: Prolog
§ 1984: Matlab
§ 1982: Maple
§ 1988: Mathematica
§ 1990: Haskell 
§ 1993: R
Numerical Mathematics  libraries
§ 1970: IMSL
§ 1971: NAG
§ 2001: GNU Scientific Library
§ 2003: Intel Math Kernel Library
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MS-DOS 2.1
1984
50k LOC 
8088 ASM

Windows NT 3.51, 1993 

5M LOC 

Explosive Growth of Source Code
Windows 10, 2015
60M LOC 

400k LOC
5 CPUs

100M LOC
50 CPUs
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SPIRAL: AI for High Performance Code
Traditionally SPIRAL Approach

High performance library
optimized for given platform

SPIRAL

High performance library
optimized for given platform

Comparable 
performance



Carnegie MellonCarnegie MellonCarnegie MellonCarnegie Mellon

SPIRAL’s History: The Long Arc of Math in CS

Project ongoing since 1998, core idea dates back to 1968



Carnegie MellonCarnegie MellonCarnegie MellonCarnegie Mellon

Outline

§ Introduction

§ Specifying Computation

§ Achieving Performance Portability

§ Case Study: FFTs on AI Accelerators

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson,  M. Püschel, J. C. Hoe, J. M. F. Moura: 
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018. 
Special Issue on From High Level Specification to High Performance Code

http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/
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SPIRAL: AI for Performance Engineering
Given: 
§ Mathematical problem specification

core mathematics does not change
§ Target computer platform

varies greatly, new platforms introduced often

Wanted:
§ Very good implementation of specification on platform
§ Proof of correctness

y = FFT(x)

on
automatic

void fft64(double  *Y, double  *X) {    
    ...
    s5674 = _mm256_permute2f128_pd(s5672, s5673, (0) | ((2) << 4));
    s5675 = _mm256_permute2f128_pd(s5672, s5673, (1) | ((3) << 4));
    s5676 = _mm256_unpacklo_pd(s5674, s5675);
    s5677 = _mm256_unpackhi_pd(s5674, s5675);
    s5678 = *((a3738 + 16));
    s5679 = *((a3738 + 17));
    s5680 = _mm256_permute2f128_pd(s5678, s5679, (0) | ((2) << 4));
    s5681 = _mm256_permute2f128_pd(s5678, s5679, (1) | ((3) << 4));
    s5682 = _mm256_unpacklo_pd(s5680, s5681);
    s5683 = _mm256_unpackhi_pd(s5680, s5681);
    t5735 = _mm256_add_pd(s5676, s5682);
    t5736 = _mm256_add_pd(s5677, s5683);
    t5737 = _mm256_add_pd(s5670, t5735);
    t5738 = _mm256_add_pd(s5671, t5736);
    t5739 = _mm256_sub_pd(s5670, _mm256_mul_pd(_mm_vbroadcast_sd(&(C22)), t5735));
    t5740 = _mm256_sub_pd(s5671, _mm256_mul_pd(_mm_vbroadcast_sd(&(C22)), t5736));
    t5741 = _mm256_mul_pd(_mm_vbroadcast_sd(&(C23)), _mm256_sub_pd(s5677, s5683));
    t5742 = _mm256_mul_pd(_mm_vbroadcast_sd(&(C23)), _mm256_sub_pd(s5676, s5682));
    ...
}

performance

QED.
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OL Operators
Definition
§ Operator: Multiple vectors ! Multiple vectors
§ Stateless
§ Higher-dimensional data is linearized
§ Operators are potentially nonlinear

Example: Scalar product

z

x

y
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¢ Application specific: Safety Distance as Rewrite Rule

 Problem specification: hand-developed or automatically produced

¢ One-time effort: mathematical library

Breaking Down Operators into Expressions

Library of well-known identities expressed in OL
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Translation and OptimizationMathematical Loop Abstraction

Rule Based Compiler

Loop and Code Level Rule System

Abstract Code
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Mathematical specification

Putting it Together: One Big Rule System

Final code

Expansion + backtracking

Recursive descent

Confluent term rewriting

Recursive descent

Recursive descent

Abstract code

OL specification

OL (dataflow) 
expression

Optimized Ʃ-OL 
expression 

Ʃ-OL (loop) expression

Optimized abstract 
code

C code

Confluent term rewriting
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Inspiration: Symbolic Integration
§ Rule based AI system

basic functions, substitution

§ May not succeed
not all expressions can be 
symbolically integrated

§ Arbitrarily extensible
define new functions as integrals
Γ(.), distributions, Lebesgue integral

§ Semantics preserving
rule chain = formal proof

§ Automation
Mathematica, Maple
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Outline

§ Introduction

§ Specifying Computation

§ Achieving Performance Portability

§ Case Study: FFTs on AI Accelerators

M. Püschel, J. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, N. Rizzolo:
SPIRAL: Code Generation for DSP Transforms
Proceedings of the IEEE Special Issue on "Program Generation, Optimization, and Adaptation," Vol. 93, No. 2, 2005, pages 232-275.

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson,  M. Püschel, J. C. Hoe, J. M. F. Moura: 
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018. 
Special Issue on From High Level Specification to High Performance Code

http://users.ece.cmu.edu/~franzf/papers/si-spiral.pdf
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/
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Today’s Computing Landscape
1 Gflop/s = one billion floating-point operations  (additions or multiplications) per second

IBM POWER10
7.5 Tflop/s, 130 W
30 cores, 4 GHz
4-way VSX-3, MMA
 

Intel Xeon 6980P  
16 Tflop/s, 500 W
128 cores, 2 – 3.9 GHz
2-way—16-way AVX-512

Google Willow
105 qubits

Snapdragon 8+ Gen1
15 Gflop/s, 2 W
8 cores, 3.2 GHz
A730 GPU, Hexagon DSP

Dell PowerEdge R960
30 Tflop/s, 8 TB, 1.5kW
4x 60 cores, 1.9 – 3.5 GHz
2-way – 16-way AVX512

Cerebras WSE3
12.5 Pflop/s 20kW
900,000 cores

Nvidia H200
34 Tflop/s, 700 W
16,896 cores, 1.41 GHz
2 Pflop/s FP16 tensor cores

El Capitan
2.7 Eflop/s, 30MW
43k 24-core CPUs + 43k GPUs
#1 in Top500
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Platform-Aware Formal Program Synthesis

ν
p
μ

Architectural parameter:
Vector length, 
#processors, …

rewritingdefines

Kernel: 
problem size, 
algorithm choice

pick
search

abstraction abstraction

Model: common abstraction
= spaces of matching formulas

architecture
space

algorithm
space

optimization
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Software Defined RadioLinear Transforms

Synthetic Aperture Radar (SAR)

convolutional
encoder

Viterbi
decoder

010001 11 10 00 01 10 01 11 00 01000111 10 01 01 10 10 11 00

Some Application Domains in OL

Interpolation 2D FFT

PDEs/HPC Simulations



Carnegie MellonCarnegie MellonCarnegie MellonCarnegie Mellon

Formal Approach for all Types of Parallelism

§ Multithreading (Multicore)

§ Vector SIMD (SSE, VMX/Altivec,…)

§ Message Passing (Clusters, MPP)

§ Streaming/multibuffering (Cell)

§ Graphics Processors (GPUs)

§ Gate-level parallelism (FPGA)

§ HW/SW partitioning (CPU + FPGA)
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§ Tensor product: embarrassingly parallel operator 

Modeling Hardware: Base Cases

A
A
A
A

x y

Processor 0
Processor 1
Processor 2
Processor 3

§ Permutation: problematic; may produce false sharing

x y

§ Hardware abstraction: shared cache with cache lines
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Example Program Transformation Rule Set

Recursive rules

Base case rules
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Autotuning in Constraint Solution Space

Expansion + backtracking

Recursive descent

Confluent term rewriting

Recursive descent

Recursive descent

Abstract code

OL specification

OL (dataflow) 
expression

Optimized Ʃ-OL 
expression 

Ʃ-OL (loop) 
expression

Optimized abstract 
code

C code

Confluent term rewriting

AVX 2-way 
_Complex double

Base cases

DFT8

Breakdown rulesTransformation rules
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Translating an OL Expression Into Code

C Code:

Output = 
Ruletree, expanded into
OL Expression:

∑-OL:

Constraint Solver Input:

Expansion + backtracking

Recursive descent

Confluent term rewriting

Recursive descent

Recursive descent

Abstract code

OL specification

OL (dataflow) 
expression

Optimized Ʃ-OL 
expression 

Ʃ-OL (loop) 
expression

Optimized abstract 
code (icode)

C code

Confluent term rewriting

void dft8(_Complex double *Y, _Complex double *X) {
    __m256d s38, s39, s40, s41,...
    __m256d  *a17, *a18;
    a17 = ((__m256d  *) X);
    s38 = *(a17);
    s39 = *((a17 + 2));
    t38 = _mm256_add_pd(s38, s39);
    t39 = _mm256_sub_pd(s38, s39);
    ...
    s52 = _mm256_sub_pd(s45, s50);
    *((a18 + 3)) = s52;
}
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¢ Linear operator = matrix-vector product
Algorithm = matrix factorization

¢ Linear operator = matrix-vector product
Program = matrix-vector product

Symbolic Verification for Linear Operators

! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! ! !
! ! ! ! ! ! ! ! ! !
! ! ! ! ! ! !

! !

! ! !

! ! ! ! ! ! ! ! ! !" # " # " # " # " #
$ % $ % $ % $ % $ %& & ! ! ! ! ! & ! ! ! ! !$ % $ % $ % $ % $ %=
$ % $ % $ % $ % $ %& & ! & ! ! ! ! ! ! ! ! !
$ % $ % $ % $ % $ %& & ! ! & ! ! ! ! ! & ! ! !' ( ' ( ' ( ' ( ' (

= ? DFT4([0,1,0,0])

= ?

Symbolic evaluation and symbolic execution establishes correctness
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Outline

§ Introduction

§ Specifying Computation 

§ Achieving Performance Portability

§ Case Study: FFTs on AI Accelerators

S. Rao: LibraryX: A Framework for Cross-Library-Call Optimization, Ph.D. Thesis, 2025
F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van 
Straalen, P. Colella: FFTX and SpectralPack: A First Look, Workshop on Parallel Fast Fourier Transforms (PFFT).
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Performance vs. Precision
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FP64 Emulation Using Integer Units
#define _fp64int64_add(_ce, _cm, _ae, _am, _be, _bm){ \
    __int16_t _diff0 = _subw((_ae), (_be));  \
    __int16_t _diff1 = _subw((_be), (_ae));  \
    _Bool _flag = _cmplsw((_ae), (_be));  \
    __int16_t _shamt = _selw(_flag, _diff1, _diff0); \
    __int64_t _sm = _selq(_flag, (_am), (_bm)); \
    __int64_t _km = _selq(_flag, (_bm), (_am));  \
    _sm = _sarq(_sm, _shamt);  \
    _sm = _selq(_cmplw(_shamt, 64), _sm, 0); \
    _Bool _cmc; __uint64_t _sum;  \
    _addqc(_sum, _cmc, _km, _sm);  \
    _Bool _ovf = _sltq(_andq(_xorq(_sm, _sum), \
         _xorq(_km, _sum)), 0);  \
    (_cm) = _selq(_ovf, _shrqdq((uint64_t)_cmc, _sum, 1), _sum);  \
    (_ce) = _caddw(_selw(_flag, (_be), (_ae)), 1, _ovf);  \
}

Cerebras WSE3
no FP64

Amazon Trainium
no FP64

Nvidia 5090
“compatibility-only” FP64
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First Amazon Trainium FP64 Results 

Amazon Trainium
no FP64
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LibraryX: SPIRAL as Active Library Backend
FFTX powered by SPIRALExecutable

Other C/C++ Code

Code module 2
I/O Pruned 
Convolution
CUDA

FFTX call site
fftx_plan(…)
fftx_execute(…)

FFTX call site
fftx_plan(…)
fftx_execute(…)

Code module 1
Pruned FFT
OpenMP + AVX2

Core system:
SPIRAL engine

Extensible platform
and programming
model definitions

Automatically 
generated tuned
components and
special cases

SPIRAL module:
Code synthesis, trade-offs
reconfiguration, statistics 

Platform/ISA
Plug-In:
CUDA

Paradigm 
Plug-In:
GPU

Platform/ISA
Plug-In:
OpenMP

Paradigm 
Plug-In:
Shared memory

Platform/ISA
Plug-In:
AVX, AVX2

Paradigm 
Plug-In:
SIMD instructions

LibraryX and C++/Python/Julia SPL API enable SPIRAL as Agent for GenAI
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P3M Method (MLC): 
Cabana / Kokkos + FFTX on a GPU

Structured Grids:  Proto

Real Science Applications + Other Motifs

Solar wind (UAH, GSU, LBNL)

3D Hill’s Vortex (ORNL, Stanford, LBNL)

2
.3
.1

D
e
fi
n
it
io
n
s

n
(⇠
2
, ⇠
3
)
=
n
: [
�"

, 1
+
"]

2 !
R

3
, |
|n
|| =

1
, 0


⇠ 2
, ⇠
3

1
, X

=
rn

, r
=
r(
⇠ 1
)

r ⇠
X

=
0

@
@ ⇠

1
X

@ ⇠
2
X

@ ⇠
3
X

1
A

T =
A
D

r
, A

=
0

@
n

@ ⇠
2
n

@ ⇠
3
n

1
A

T , D
r
=

0
@

ṙ
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(U. of Md, CMU, LBNL)
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SPIRAL: AI for High Performance Code
Algorithms Correctness

Hardware

performance

QED.
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SPIRAL 8.5.3 and FFTX 1.0
¢ Open Source SPIRAL available 

¢ non-viral license (BSD)
¢ Commercial support via SpiralGen, Inc.
¢ www.spiral.net, www.spiralgen.com 

¢ Developed over almost 25 years 

¢ Ongoing open source development
DOE Ai4Science, SciDAC, Base

¢ FFTX 1.0 release
www.spiral.net/software/fftx.html 

¢ SPIRAL Software Foundation
Next step in the evolution, ETA 2026

F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato, J. R. Johnson,  M. Püschel, J. C. Hoe, J. M. F. Moura: 
SPIRAL: Extreme Performance Portability, Proceedings of the IEEE, Vol. 106, No. 11, 2018. 
Special Issue on From High Level Specification to High Performance Code

F. Franchetti, D. G. Spampinato, A. Kulkarni, D. T. Popovici, T. M. Low, M. Franusich, A. Canning, P. McCorquodale, B. Van Straalen, P. 
Colella: FFTX and SpectralPack: A First Look, IEEE International Conference on High Performance Computing, Data, and Analytics, 2018

http://www.spiral.net/
http://www.spiral.net/
http://www.spiralgen.com/
http://www.spiral.net/software/fftx.html
http://users.ece.cmu.edu/~franzf/papers/08510983_Spiral_IEEE_Final.pdf
http://proceedingsoftheieee.ieee.org/upcoming-issues/from-high-level-specification-to-high-performance-code/

