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Sparse Fourier Transform Results

Sparse Fourier Transforms for Functions of Many Variables

Theorem (High Dim. SFT [Gross, M.I., Kdmmerer, Volkmer, 2022])

Choose any finite T C 79 N [~K /2, K /2] you like. There exist Sparse
Fourier Transform (SFT) algorithms that use samples from g : T4 — C
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Sparse Fourier Transforms for Functions of Many Variables

Theorem (High Dim. SFT [Gross, M.I., Kdmmerer, Volkmer, 2022])

Choose any finite T C 79 N [~K /2, K /2] you like. There exist Sparse
Fourier Transform (SFT) algorithms that use samples from g : T4 — C
(corrupted by errors at most e, > 0 in absolute magnitude) to produce a
sparse approximation g° to g satisfying the error bounds

n N 8
g, < i | 181z =

optH
& -

+Vs(l1g — &lzll1 + ex)

m

18° — 2ll; S K [||glz — @), + s(1g — &lzllx + eo)]
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Sparse Fourier Transforms for Functions of Many Variables
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Sparse Fourier Transform Results

Sparse Fourier Transforms for Functions of Many Variables

Theorem (High Dim. SFT [Gross, M.I., Kdmmerer, Volkmer, 2022])

Choose any finite T C 79 N [~K /2, K /2] you like. There exist Sparse
Fourier Transform (SFT) algorithms that use samples from g : T4 — C
(corrupted by errors at most e, > 0 in absolute magnitude) to produce a
sparse approximation g° to g satisfying the error bounds

n N 8
g, < i | 181z =

optH
& -

+Vs(l1g — &lzll1 + ex)

m

18° — 2ll; S K [||glz — @), + s(1g — &lzllx + eo)]

m deterministically with complexity O(ds? polylog(d, |Z|, K)),
m and with high probability with complexity O(ds polylog(d, |Z|, K)).
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Sparse Spectral Methods Background

Model periodic diffusion equation

m Consider the stationary diffusion equation

Llalu:= -V -(aVu) = f.
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m Consider the stationary diffusion equation

Llalu:= -V -(aVu) = f.

m There are three functions (assuming periodicity T := R/Z):

m a: T — R is the diffusion coefficient,
m f:T9 = R is the forcing function,
m and u: T9 — R is the solution.
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

m Substitute Fourier series for data and solution:

-V - (a(x)Vu(x)) = f(x)
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Fourier spectral methods in 3 minutes

m Substitute Fourier series for data and solution:

V- (ax) V() =

v Z é\|e271'1|-x \V4 Z 0k62ﬂ'1k-x

lezd kezd
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

m Substitute Fourier series for data and solution:

lezd

-V - (a(x)Vu(x)) = f(x)

S v § :é\|e2ﬂ'1|-xv § : 0k62ﬂ'1k-x — § :fje2ﬂ'lj-x

kezd

jezd

S (@21 + K) - kb2 H0x = 37 o2

l,kezd
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

m Substitute Fourier series for data and solution:

-V - (a(x)Vu(x)) = f(x)

S v § :§Ie2ﬂ'1|-xv § : 0k62ﬂ'1k-x — § :fje2ﬂ'lj-x

lezd kezd jezd
D @m)2(1+ k) - kg e Hx = = femix,
l,kezd jezd

m Match up Fourier coefficients:

> (@n)% ki = Vjez.
kezd
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

m This looks like something we can work with! Just solve for :

> Lalkdec= Y (2r)%) - ka_i = f; Vj ez
kezd kezd
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

m This looks like something we can work with! Just solve for :

> Lalkbcc= Y (2r)%) - Kaj_i = f; Vj ez
kezd kezd

m Except d is huge... (1) need a subset of Z9... & (2) need f and 4
m FFTs save the day?!? They

m enforce a basis truncation,
m approximate the data’s Fourier coefficients,
m and are blazing fast 7Kinda? If not, use an SFT!!!
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SRETECRS RGN VISHIEN Proposed Method

Error analysis

Lemma (Special case of Céa/Strang's lemma [Canuto et al., 2006])

Let ~ denote an approximate Fourier transform algorithm, and let v have
Fourier coefficients solving the matrix equation

S lai=1F Viel (1)
keZ

Then

lu = Vil Sar lu = ulzllen + 1 = Fll2 + 115 = 1.
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> Laki=1f Vel (1)
keZ
U725 lu = vlig Sar llu = ulzllp + IF = Fllz + 15 — &)1

A Solution?

H Use an SFT to compute 3y =~ 4 on Vk € supp(4).

B Use an SFT to compute # = f, on Yk € supp(f)
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Let ~ denote an approximate Fourier transform algorithm, and let v have
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keZ
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H Use an SFT to compute 3y =~ 4 on Vk € supp(4).
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SRETECRS RGN VISHIEN Proposed Method

Error analysis

Lemma (Special case of Céa/Strang's lemma [Canuto et al., 2006])

Let ~ denote an approximate Fourier transform algorithm, and let v have
Fourier coefficients solving the matrix equation

> Laki=1f Vel (1)
keZ
U=y lu =il Sa llu— ulzllp + I1f = Fll2+ 15 — 1.
A Solution?

Use an SFT to compute d ~ 4y on Vk € supp(8).

Use an SFT to compute # = f on Vk € supp(f).

Use discovered supp(4) and supp(f) to construct a “good” set Z C Z9.
Solve (1) to find the ¥ Vk € Z.
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Al
Swapping out FFTs for SFTs when d =1

Choose trigonometric polynomials for data

a(x) = 2+ sin(2mx),
f(x) = cos(2m4x) — 500 cos(2775x) + 1000 cos(27150x).

SFT spectral method DFT spectra[ m(?thod
WWWWWW\WW A

m Only parameter is bandwidth K.
Increases by 2 each frame.

m Takes K =~ 400 to resolve the
full solution.

m Each frame increases s by 1.

m Takes s = 3 to resolve the full
solution.
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Sparse Spectral Methods Higher Dimensions

Swapping out FFTs for SFTs when d = 2

Choose trigonometric polynomials for data

a(x,y) = 2 +sin(2m(x + 2y)),
f(x,y) = cos (27(5x + 3y)) — 500 cos (27w (74x + 76y)) +
1000 cos (27(151x + 149y)) .

SFT spectral method DFT spectral method

o
1 2 3 4 0 50 100 150 200 250 300 350 400 450

The error in the computed solutions is shown as s and K increase each frame of
the respective animations. Note that each FFT requires O(K? log?(K))
operations compared to O(ds polylog(d, |Z|, K)) for an SFT.
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_ SparseSpectral Methods JEEUEIERRY
But How Should we Choose Z7?

SFTs Control Last Two Terms in Céa's Lemma...

lu = vl Sar llu— ulzllm +1If = Fll2+ 14— 4l

m Assume data is Fourier sparse.
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But How Should we Choose Z7?

SFTs Control Last Two Terms in Céa's Lemma...

lu = vl Sar llu— ulzllm +1If = Fll2+ 14— 4l

m Assume data is Fourier sparse.

m Let's take a closer look at our
Galerkin operator

L[a] = ((27)%) - kdjk); e

_ Sparse Spectral Methods January 30", 2026 10 /17



_ SparseSpectral Methods JEEUEIERRY
But How Should we Choose Z7?

SFTs Control Last Two Terms in Céa's Lemma...

lu = vl Saf llu— ulzllm + I = Fll2+ 115 = 4l

m Assume data is Fourier sparse.

m Let's take a closer look at our
Galerkin operator

L[a] = ((27)%) - kdjk); e

m Only elements of i spaced out
according to supp(4) will
interact in L[4]d.

_ Sparse Spectral Methods January 30", 2026 10 /17



Sparse Spectral Methods Stamping sets

“Stamp’ sets
supp(4)
m Consider supp(4). ****
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Sparse Spectral Methods Stamping sets

“Stamp’ sets
supp(4)
m Consider supp(3). ****
= Now supp(f).
m Let
SN . supp(f) N=0 St
SN=1 £ supp(3) N >o0.
n®
n ,n
ne
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Sparse Spectral Methods Analysis

Error analysis of spectral method

Theorem (Sparse spectral algorithm [Gross, M.l., 2023])

Let a°,f° be from high-dimensional SFT previously discussed, and let u$N
have Fourier coefficients solving the matrix equation

SO oalat = F vie st
keSN

Then for a decay rate A < 1 characterized by the ellipticity of a,
lu— uM |l Sap AN IF = Folla + (14— &)1
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Error analysis of spectral method

Theorem (Sparse spectral algorithm [Gross, M.l., 2023])

Let a°,f° be from high-dimensional SFT previously discussed, and let u$N
have Fourier coefficients solving the matrix equation

SO oalat = F vie st
keSN

Then for a decay rate A < 1 characterized by the ellipticity of a,
lu— uM |l Sap AN IF = Folla + (14— &)1

With a randomly chosen rank-1 lattice w.h.p. we have

opt

|F -7

.S Ky/s||f — (fl[_K/z,K/2]d>

S
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Sparse Spectral Methods Analysis

Error analysis of spectral method

Theorem (Sparse spectral algorithm [Gross, M.l., 2023])

Let a°,f° be from high-dimensional SFT previously discussed, and let u$N
have Fourier coefficients solving the matrix equation

SO oalat = F vie st
keSN

Then for a decay rate A < 1 characterized by the ellipticity of a,
lu— uMlp Sar AN IF = Foll2 + (18 = &)1

With a randomly chosen rank-1 lattice w.h.p. we have

|F -7
2

f— (7?|[_K/z,K/z]d)(s)pt 1

Uses theoretical SFT error bounds [Gross, M.I

., Kdmmerer, Volkmer, 2022]
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Sparse Spectral Methods Analysis

More on stamping factor

Two quantities of diffusion
a(t) coefficient, a, determine exponential
decay:
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: . decay:
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m Minimum: ai,.

m Deviation from mean:
la — o[ cc-

dmin
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Sparse Spectral Methods Analysis

More on stamping factor

Two quantities of diffusion

a(t) coefficient, a, determine exponential
: . decay:
Ha - aOHL% ..
m Minimum: ai,.

m Deviation from mean:

dmin Ha_é\OHLﬁc
The decay factor has the form
0 T A la — ol ;oo

dmin — 2”3 - §O||Loo '
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Sparse Spectral Methods Analysis

Complexity analysis of spectral method

m The algorithm uses two SFTs and a |S"V| x |SV| (sparse) matrix
system solve.
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system solve.

m Each SFT succeeds with high probability with complexity
O(ds polylog(d, s, K)).
|SN| can be upper bounded by

‘SN‘ =0 (max(s, 2N + 1)mi"(s’2N+1)) .

So dependence on ambient dimension is linear.
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Sparse Spectral Methods Analysis

Complexity analysis of spectral method

The algorithm uses two SFTs and a |SV| x |SV| (sparse) matrix
system solve.

m Each SFT succeeds with high probability with complexity
O(ds polylog(d, s, K)).
|SN| can be upper bounded by

‘SN‘ =0 (max(s, 2N + 1)mi"(s’2N+1)) .

So dependence on ambient dimension is linear.

And exponential dependence on N is computationally mitigated.

Sparse Spectral Methods January 30", 2026 14 /17



Sparse Spectral Methods Numerics

High-dimensional example

m a sparsity is 51.

2:‘5 ., o am d—4 m f sparsity is 2.
LE L, N -o-e d=16 m Frequencies are
= 10 RN _
= \*‘\\l‘; -+ d =64 chosen
Ry e Z - 5324 randomly in
1 2 3 L9 bandwidth of
N (stamping level) 1000 in each
, ) dimension.
Figure: Proxy error solving V - (aVu) = f
Sparse Spectral Methods
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3D advection-diffusion-reaction example

—V - (a(x)Vu(x)) + b(x) - Vu(x) + c(x)u(x) = f(x).
Each term is & 20 sparse for 90 total operator terms and 10 forcing terms.

s N [F =ML/l

8 0.518
2 0.518
20 1 0.054
2 0.031

Table: Error in approximating ADR
solution.

0 01 02 03 04
x
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