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Sparse Fourier Transform Results

Sparse Fourier Transforms for Functions of Many Variables

Theorem (High Dim. SFT [Gross, M.I., Kämmerer, Volkmer, 2022])

Choose any finite I ⊆ Zd ∩ [−K/2,K/2]d you like. There exist Sparse
Fourier Transform (SFT) algorithms that use samples from g : Td → C
(corrupted by errors at most e∞ > 0 in absolute magnitude) to produce a
sparse approximation ĝ s to ĝ satisfying the error bounds

‖ĝ s − ĝ‖2 . K

[∥∥ĝ |I − (ĝ |I)opt
s

∥∥
1√

s
+
√
s(‖ĝ − ĝ |I‖1 + e∞)

]
‖ĝ s − ĝ‖1 . K

[∥∥ĝ |I − (ĝ |I)opt
s

∥∥
1 + s(‖ĝ − ĝ |I‖1 + e∞)

]
deterministically with complexity O(ds2 polylog(d , |I|,K )),
and with high probability with complexity O(ds polylog(d , |I|,K )).
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s

∥∥
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Sparse Spectral Methods Background

Model periodic diffusion equation

Consider the stationary diffusion equation

L[a]u := −∇ · (a∇u) = f .

There are three functions (assuming periodicity T := R/Z):
a : Td → R is the diffusion coefficient,
f : Td → R is the forcing function,
and u : Td → R is the solution.
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

Substitute Fourier series for data and solution:

−∇ · (a(x)∇u(x)) = f (x)

−∇ ·

∑
l∈Zd

âle2πil·x∇
∑
k∈Zd

ûke2πik·x

 =
∑
j∈Zd

f̂je2πij·x

∑
l,k∈Zd

(2π)2(l+ k) · k âlûke2πi(l+k)·x =
∑
j∈Zd

f̂je2πij·x.

Match up Fourier coefficients:∑
k∈Zd

(2π)2j · kâj−kûk = f̂j ∀j ∈ Zd .
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Sparse Spectral Methods Background

Fourier spectral methods in 3 minutes

This looks like something we can work with! Just solve for û:∑
k∈Zd

L[â]j,kûk :=
∑
k∈Zd

(2π)2j · kâj−kûk = f̂ j ∀j ∈ Zd .

Except d is huge... (1) need a subset of Zd ... & (2) need f̂ and â

FFTs save the day?!? They
enforce a basis truncation,
approximate the data’s Fourier coefficients,
and are blazing fast ?Kinda? If not, use an SFT!!!
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∑
k∈Zd
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Sparse Spectral Methods Proposed Method

Error analysis

Lemma (Special case of Céa/Strang’s lemma [Canuto et al., 2006])
Let ˜denote an approximate Fourier transform algorithm, and let v have
Fourier coefficients solving the matrix equation∑

k∈I
L[ã]j,kv̂k = f̃j ∀j ∈ I. (1)

Then ‖u − v‖H1 .a,f ‖u − u|I‖H1 + ‖f̂ − f̃ ‖2 + ‖â− ã‖1.

A Solution?

1 Use an SFT to compute ãk ≈ âk on ∀k ∈ supp(â).
2 Use an SFT to compute f̃k ≈ f̂k on ∀k ∈ supp(f̂ ).
3 Use discovered supp(â) and supp(f̂ ) to construct a “good” set I ⊂ Zd .
4 Solve (1) to find the v̂k ∀k ∈ I.
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L[ã]j,kv̂k = f̃j ∀j ∈ I. (1)

Then ‖u − v‖H1 .a,f ‖u − u|I‖H1 + ‖f̂ − f̃ ‖2 + ‖â− ã‖1.
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A Solution?

1 Use an SFT to compute ãk ≈ âk on ∀k ∈ supp(â).
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Sparse Spectral Methods Example

Swapping out FFTs for SFTs when d = 1

Choose trigonometric polynomials for data

a(x) = 2+ sin(2πx),
f (x) = cos(2π4x)− 500 cos(2π75x) + 1000 cos(2π150x).

SFT spectral method DFT spectral method

Each frame increases s by 1.
Takes s = 3 to resolve the full
solution.

Only parameter is bandwidth K .
Increases by 2 each frame.
Takes K ≈ 400 to resolve the
full solution.
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Sparse Spectral Methods Higher Dimensions

Swapping out FFTs for SFTs when d = 2

Choose trigonometric polynomials for data

a(x , y) = 2+ sin(2π(x + 2y)),
f (x , y) = cos (2π(5x + 3y))− 500 cos (2π(74x + 76y))+

1000 cos (2π(151x + 149y)) .

SFT spectral method DFT spectral method

The error in the computed solutions is shown as s and K increase each frame of
the respective animations. Note that each FFT requires O(K d logd(K ))

operations compared to O(ds polylog(d , |I|,K )) for an SFT.
M.A. Iwen Sparse Spectral Methods January 30th, 2026 9 / 17



Sparse Spectral Methods Stamping sets

But How Should we Choose I?

SFTs Control Last Two Terms in Céa’s Lemma... & for the First...???

‖u − v‖H1 .a,f ‖u − u|I‖H1 + ‖f̂ − f̃ ‖2 + ‖â− ã‖1

Assume data is Fourier sparse.
Let’s take a closer look at our
Galerkin operator

L[â] =
(
(2π)2j · kâj−k

)
j,k∈Zd .

Only elements of û spaced out
according to supp(â) will
interact in L[â]û.
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Sparse Spectral Methods Stamping sets

“Stamp” sets

Consider supp(â).
Now supp(f̂ ).
Let

SN :=

{
supp(f̂ ) N = 0
SN−1 + supp(â) N > 0.

supp(â)

supp(f̂ ) = S0
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Sparse Spectral Methods Analysis

Error analysis of spectral method

Theorem (Sparse spectral algorithm [Gross, M.I., 2023])

Let as , f s be from high-dimensional SFT previously discussed, and let us,N

have Fourier coefficients solving the matrix equation∑
k∈SN

L[âs ]j,kû
s,N
k = f̂ sj ∀j ∈ SN .

Then for a decay rate A < 1 characterized by the ellipticity of a,
‖u − us,N‖H1 .a,f AN+1 + ‖f̂ − f̂ s‖2 + ‖â− âs‖1.

With a randomly chosen rank-1 lattice w.h.p. we have∥∥∥f̂ − f̂ s
∥∥∥

2
. K
√
s

∥∥∥∥f̂ − (f̂ |[−K/2,K/2]d)opt

s

∥∥∥∥
1

Uses theoretical SFT error bounds [Gross, M.I., Kämmerer, Volkmer, 2022]
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Sparse Spectral Methods Analysis

More on stamping factor

t
0 1

a(t)
â0

‖a− â0‖L∞

amin

Two quantities of diffusion
coefficient, a, determine exponential
decay:

Minimum: amin.
Deviation from mean:
‖a− â0‖L∞ .

The decay factor has the form

A :=
‖a− â0‖L∞

amin − 2‖a− â0‖L∞
.
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Sparse Spectral Methods Analysis

Complexity analysis of spectral method

The algorithm uses two SFTs and a |SN | × |SN | (sparse) matrix
system solve.
Each SFT succeeds with high probability with complexity
O(ds polylog(d , s,K )).
|SN | can be upper bounded by∣∣∣SN ∣∣∣ = O (max(s, 2N + 1)min(s,2N+1)

)
.

So dependence on ambient dimension is linear.
And exponential dependence on N is computationally mitigated.
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Sparse Spectral Methods Numerics

High-dimensional example

1 2 3

10−2

N (stamping level)

‖f
−
f
s,
N
‖ L

2
‖f
‖ L

2 d = 4
d = 16
d = 64
d = 256
d = 1024

Figure: Proxy error solving ∇ · (a∇u) = f

a sparsity is 51.
f sparsity is 2.
Frequencies are
chosen
randomly in
bandwidth of
1000 in each
dimension.
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Sparse Spectral Methods Numerics

3D advection-diffusion-reaction example

−∇ · (a(x)∇u(x)) + b(x) · ∇u(x) + c(x)u(x) = f (x).
Each term is ≈ 20 sparse for 90 total operator terms and 10 forcing terms.

s N
∥∥f − f s,N

∥∥
L2/‖f ‖L2

8
1 0.518

2 0.518

20
1 0.054

2 0.031

Table: Error in approximating ADR
solution.
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