
MS2 and MS13
State-of-the-Art FFT --- Algorithms,
Implementations, and Applications

• Organizers:
– Daisuke Takahashi

University of Tsukuba, Japan
– Franz Franchetti

Carnegie Mellon University, USA
– Samar A. Aseeri

King Abdullah University of Science &
Technology (KAUST), Saudi Arabia

– Benson K. Muite
University of Tartu, Estonia

2018/3/7 SIAM PP18 1

Aim of this minisymposium
• The fast Fourier transform (FFT) is widely used in

many areas of science and engineering.
• This minisymposium is an opportunity to discuss

high performance and parallel implementations of
FFT, mathematical encapsulations of FFT
algorithms that are amenable to automatic
implementations tuned to hardware platforms.

• It is also a venue to discuss applications and
performance results of FFT on current and
emerging platforms such as many-core processors,
GPUs, and distributed-memory systems.

• http://www.fft.report
2018/3/7 SIAM PP18 2

http://www.fft.report/

MS2: Part I of II
• 1:00-1:20 Implementation of Parallel FFTs on

Cluster of Intel Xeon Phi Processors
 Daisuke Takahashi, University of Tsukuba, Japan
• 1:25-1:45 SPIRAL FFT
 Franz Franchetti, Carnegie Mellon University, USA
• 1:50-2:10 Pipelining Fast Fourier Transform on

the OpenPOWER Cluster
 Jun Doi, IBM Research - Tokyo, Japan
• 2:15-2:35 Automatic FFT Kernel Generation for

CUDA GPUs
 Akira Nukada, Tokyo Institute of Technology, Japan

2018/3/7 SIAM PP18 3

MS13: Part II of II
• 3:10-3:30 Fast Fourier Transforms (fft)
 Samar A. Aseeri, King Abdullah University of
 Science & Technology (KAUST), Saudi Arabia
• 3:35-3:55 Use of the Fast Fourier Transform in

Solving Partial Differential Equations
 Benson K. Muite, University of Tartu, Estonia
• 4:00-4:20 Parallel Fast Gauss Transform
 Hari Sundar, University of Utah, USA
• 4:25-4:45 Implementation of OpenFFT and Its

Application to Industrial Problems
 Truong Vinh Truong Duy, Nissan ARC, Japan

2018/3/7 SIAM PP18 4

Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan

2018/3/7 SIAM PP18 5

Outline
• Background
• Objectives
• Six-Step FFT Algorithm
• In-Cache FFT Algorithm and Vectorization
• Computation-Communication Overlap
• Automatic Tuning of Parallel 1-D FFT
• Performance Results
• Conclusion

2018/3/7 SIAM PP18 6

Background
• The fast Fourier transform (FFT) is widely used in

science and engineering.
• Parallel FFTs on distributed-memory parallel

computers require intensive all-to-all
communication, which affects their performance.

• How to overlap the computation and the all-to-all
communication is an issue that needs to be
addressed for parallel FFTs.

• Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.

2018/3/7 SIAM PP18 7

Objectives
• Several FFT libraries with automatic tuning have

been proposed.
– FFTW, SPIRAL, and UHFFT

• An Implementation of parallel 1-D FFT on cluster of
Intel Xeon Phi coprocessors has been presented
[Park et al. 2013].

• However, to the best of our knowledge, parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors has not yet been reported.

• We propose an implementation of a parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors.

2018/3/7 SIAM PP18 8

Approach
• The parallel 1-D FFT implemented is based on the

six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

• Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap.

2018/3/7 SIAM PP18 9

Six-Step FFT Algorithm [Bailey90]
• Step 1: Transpose
• Step 2: Perform 𝑛𝑛1 individual 𝑛𝑛2-point

 multicolumn FFTs

• Step 3: Perform twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2)

 multiplication
• Step 4: Transpose
• Step 5: Perform 𝑛𝑛2 individual 𝑛𝑛1-point

 multicolumn FFTs
• Step 6: Transpose

10 2018/3/7 SIAM PP18

2018/3/7 SIAM PP18 11

Parallel 1-D FFT Algorithm Based on
Six-Step FFT

Global
Transpose

Global
Transpose

Global
Transpose

𝑁𝑁1

𝑁𝑁2

𝑁𝑁2

𝑁𝑁1

𝑁𝑁1

𝑁𝑁2
𝑁𝑁1

𝑁𝑁2

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3

Perform
twiddle factor
(𝜔𝜔𝑁𝑁1𝑁𝑁2

𝐽𝐽1𝐾𝐾2)
multiplication

In-Cache FFT Algorithm and
Vectorization

• For in-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

• Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
processor.

• Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.

12 2018/3/7 SIAM PP18

 COMPLEX*16 X(N1,N2),Y(N2,N1)
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
 DO II=1,N1,NB
 DO JJ=1,N2,NB
 DO I=II,MIN(II+NB-1,N1)
 DO J=JJ,MIN(JJ+NB-1,N2)
 Y(J,I)=X(I,J)
 END DO
 END DO
 END DO
 END DO
!$OMP PARALLEL DO
 DO I=1,N1
 CALL IN_CACHE_FFT(Y(1,I),N2)
 END DO
 …

To expand the outermost loop,
the double-nested loop can be
collapsed into a single-nested loop.

13 2018/3/7 SIAM PP18

Optimization of Parallel 1-D FFT on
Knights Landing Processor

Computation-Communication
Overlap [Idomura et al. 2014]

!$OMP PARALLEL
!$OMP MASTER

!$OMP END MASTER
!$OMP DO SCHEDULE(DYNAMIC)
 DO I=1,N

 END DO
!$OMP DO
 DO I=1,N

 END DO
!$OMP END PARALLEL

MPI communication

Computation

Computation using the
result of communication

← MPI communication is performed
 on the master thread

← Implicit barrier
 synchronization

← Computation is performed
 by a thread other than the
 master thread

← No barrier synchronization

14 2018/3/7 SIAM PP18

← Computation is performed
 after completion of the
 MPI communication

Pipelined Computation-
Communication Overlap

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)

Computation Communication

Comp. Comm.

15 2018/3/7 SIAM PP18

Comp. Comm.

Automatic Tuning of Parallel 1-D FFT

• The automatic tuning process consists of
two steps:
– Automatic tuning of all-to-all communication
– Selection of the number of divisions NDIV for the

computation-communication overlap

16 2018/3/7 SIAM PP18

Optimizing of All-to-All
Communication

• An optimized all-to-all collective algorithm for
multi-core systems connected using modern
InfiniBand network interfaces [Kumar et al.
08].

• The all-to-all algorithm completes in two steps,
intra-node exchange and inter-node
exchange.

17 2018/3/7 SIAM PP18

Two-Phase All-to-All Algorithm
• We extend the all-to-all algorithm to the general

case of 𝑃𝑃 = 𝑃𝑃𝑥𝑥 × 𝑃𝑃𝑦𝑦 MPI processes.
1. Local array transpose from

 (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦) to (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑦𝑦, 𝑃𝑃𝑥𝑥) ,
where 𝑁𝑁 is the total number of elements.

 Then 𝑃𝑃𝑦𝑦 simultaneous all-to-all communications
 across 𝑃𝑃𝑥𝑥 MPI processes are performed.
2. Local array transpose from
 (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑦𝑦, 𝑃𝑃𝑥𝑥) to (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦) .
 Then 𝑃𝑃𝑥𝑥 simultaneous all-to-all communications
 across 𝑃𝑃𝑦𝑦 MPI processes are performed.

18 2018/3/7 SIAM PP18

Automatic Tuning of All-to-All
Communication

• The two-phase all-to-all algorithm requires twice the
total amount of communications compared with the
ring algorithm.

• However, for small to medium messages, the two-
phase all-to-all algorithm is better than the ring
algorithm due to the smaller startup time.

• Automatic tuning of all-to-all communication can be
accomplished by performing a search over the
parameters of all of 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦.

• If 𝑃𝑃 = 𝑃𝑃𝑥𝑥 × 𝑃𝑃𝑦𝑦 is a power of two, the size of search
space is log2 𝑃𝑃.

19 2018/3/7 SIAM PP18

Selection of Number of Divisions for
Computation-Communication Overlap

• When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

• On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

• Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

• The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

• In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.

20 2018/3/7 SIAM PP18

Performance Results
• To evaluate the parallel 1-D FFT with automatic tuning (AT),

we compared its performance with that of the FFTW 3.3.7,
the FFTE 6.2alpha (http://www.ffte.jp/) and the FFTE
6.2alpha with AT.

• The performance was measured on the Oakforest-PACS at
Joint Center for Advanced HPC (JCAHPC).
– 8208 nodes, Peak 25.008 PFlops
– CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
– Interconnect: Intel Omni-Path Architecture
– Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE)

 Intel C compiler 18.0.1.163 (for FFTW)
– Compiler option: “-O3 -xMIC-AVX512 -qopenmp”
– MPI library: Intel MPI 2018.1.163
– flat/quadrant, MCDRAM only, KMP_AFFINITY=compact
– Each MPI process has 64 cores and 64 threads.

21 2018/3/7 SIAM PP18

http://www.ffte.jp/

Results of automatic tuning of parallel 1-D FFTs
(Oakforest-PACS, 1024 nodes)

N 𝑃𝑃 NDIV GFlops 𝑃𝑃𝑥𝑥 𝑃𝑃𝑦𝑦 NDIV GFlops
16M 1024 4 8.4 256 4 1 59.2

64M 1024 4 35.5 128 8 1 174.2

256M 1024 4 129.4 64 16 1 520.3

1G 1024 4 210.3 32 32 1 1415.6

4G 1024 4 560.0 8 128 1 1573.8

16G 1024 4 901.6 1024 1 1 2858.7

64G 1024 4 2983.1 1024 1 2 3984.5

FFTE 6.2alpha FFTE 6.2alpha with AT

22 2018/3/7 SIAM PP18

Performance of parallel 1-D FFTs
（Oakforest-PACS，1024 nodes）

0
500

1000
1500
2000
2500
3000
3500
4000

16
M

64
M

25
6M 1G 4G 16

G
64

G

Length of transform N

G
Fl

op
s

FFTE
6.2alpha (no
overlap)
FFTE
6.2alpha
(NDIV=4)
FFTE
6.2alpha with
AT
FFTW 3.3.7

23 2018/3/7 SIAM PP18

Performance of all-to-all communication
（Oakforest-PACS，1024 nodes）

0
200
400
600
800

1000
1200
1400
1600

16 12
8 1K 8K 64

K
51

2K

Message size (bytes)

B
an

dw
id

th
 (M

B
/s

ec
)

MPI_Alltoall

Alltoall
with AT

24 2018/3/7 SIAM PP18

Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2^26×number of nodes)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

1 4 16 64 25
6

10
24

Number of nodes

Ti
m

e
(s

ec
)

Communication

Computation

25 2018/3/7 SIAM PP18

Conclusion
• We proposed an implementation of parallel 1-D FFT

with automatic tuning on cluster of Intel Xeon Phi
processors.

• We used a computation-communication overlap
method that introduces a communication thread with
OpenMP.

• An automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap, was implemented.

• The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on cluster of Intel Xeon Phi processors.

26 2018/3/7 SIAM PP18

	MS2 and MS13�State-of-the-Art FFT --- Algorithms, Implementations, and Applications
	Aim of this minisymposium
	MS2: Part I of II
	MS13: Part II of II
	Implementation of Parallel FFTs on Cluster of Intel Xeon Phi Processors
	Outline
	Background
	Objectives
	Approach
	Six-Step FFT Algorithm [Bailey90]
	Parallel 1-D FFT Algorithm Based on Six-Step FFT
	In-Cache FFT Algorithm and Vectorization
	Optimization of Parallel 1-D FFT on Knights Landing Processor
	Computation-Communication Overlap [Idomura et al. 2014]
	Pipelined Computation-Communication Overlap
	Automatic Tuning of Parallel 1-D FFT
	Optimizing of All-to-All Communication
	Two-Phase All-to-All Algorithm
	Automatic Tuning of All-to-All Communication
	Selection of Number of Divisions for Computation-Communication Overlap
	Performance Results
	Results of automatic tuning of parallel 1-D FFTs (Oakforest-PACS, 1024 nodes)
	スライド番号 23
	スライド番号 24
	スライド番号 25
	Conclusion

