MS2 and MS13
State-of-the-Art FFT --- Algorithms,
Implementations, and Applications

e Organizers:

— Daisuke Takahashi
University of Tsukuba, Japan

— Franz Franchetti
Carnegie Mellon University, USA

— Samar A. Aseerli
King Abdullah University of Science &
Technology (KAUST), Saudi Arabia

— Benson K. Muite
University of Tartu, Estonia

2018/3/7 SIAM PP18



Aim of this minisymposium

* The fast Fourier transform (FFT) is widely used In
many areas of science and engineering.

e This minisymposium is an opportunity to discuss
high performance and parallel implementations of
FFT, mathematical encapsulations of FFT
algorithms that are amenable to automatic
Implementations tuned to hardware platforms.

e |tis also a venue to discuss applications and
performance results of FFT on current and
emerging platforms such as many-core processors,
GPUs, and distributed-memory systems.

o http://www.fft.report

2018/3/7 SIAM PP18 2



http://www.fft.report/

MS2: Part | of Il

1:00-1:20 Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi, University of Tsukuba, Japan
1:25-1:45 SPIRAL FFT
Franz Franchetti, Carnegie Mellon University, USA

1:50-2:10 Pipelining Fast Fourier Transform on
the OpenPOWER Cluster

Jun Dol, IBM Research - Tokyo, Japan

2:15-2:35 Automatic FFT Kernel Generation for
CUDA GPUs

Akira Nukada, Tokyo Institute of Technology, Japan

2018/3/7 SIAM PP18



MS13: Part Il of Il

3:10-3:30 Fast Fourier Transforms (fft)

Samar A. Aseeri, King Abdullah University of
Science & Technology (KAUST), Saudi Arabia

3:35-3:55 Use of the Fast Fourier Transform in
Solving Partial Differential Equations

Benson K. Muite, University of Tartu, Estonia
4:00-4:20 Parallel Fast Gauss Transform
Hari Sundar, University of Utah, USA

4:25-4:45 Implementation of OpenFFT and Its
Application to Industrial Problems

Truong Vinh Truong Duy, Nissan ARC, Japan

2018/3/7 SIAM PP18



Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan

2018/3/7 SIAM PP18 5



Outline

Background

ODbjectives

Six-Step FFT Algorithm

In-Cache FFT Algorithm and Vectorization
Computation-Communication Overlap
Automatic Tuning of Parallel 1-D FFT
Performance Results

Conclusion

2018/3/7 SIAM PP18



Background

The fast Fourier transform (FFT) is widely used in
science and engineering.

Parallel FFTs on distributed-memory parallel
computers require intensive all-to-all
communication, which affects their performance.

How to overlap the computation and the all-to-all
communication is an issue that needs to be
addressed for parallel FFTs.

Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.

2018/3/7 SIAM PP18



Objectives

Several FFT libraries with automatic tuning have
been proposed.

— FFTW, SPIRAL, and UHFFT

An Implementation of parallel 1-D FFT on cluster of
ntel Xeon Phi coprocessors has been presented
Park et al. 2013].

However, to the best of our knowledge, parallel 1-D
~FT with automatic tuning on cluster of Intel Xeon
Phi processors has not yet been reported.

We propose an implementation of a parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors.

2018/3/7 SIAM PP18 8




Approach

 The parallel 1-D FFT implemented is based on the
six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

e Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap.

2018/3/7 SIAM PP18 9



Six-Step FFT Algorithm [Bailey90]

e Step 1: Transpose

o Step 2: Perform n, individual n,-point
multicolumn FFTs

e Step 3: Perform twiddle factor (w“kz)
multiplication

e Step 4: Transpose

e Step 5: Perform n, individual n,-point
multicolumn FFTs

e Step 6: Transpose

2018/3/7 SIAM PP18 10



Parallel 1-D FFT Algorithm Based on

N Six-Step FFT
Z N
1 Perform
Global twiddle factor
Transpose (wl{lll’lflzz)

WAP.P,P, P N

multiplication

Global
Transpose

N

Global
Transpos

2018/3/7 SIAM PP18 11



In-Cache FFT Algorithm and

Vectorization

 Forin-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

e Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
pProcessor.

» Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.

2018/3/7 SIAM PP18 12



Optimization of Parallel 1-D FFT on
Knights Landing Processor

COMPLEX*16 X(N1,N2),Y(N2,N1)
ISOMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
DO I1=1,N1,NB
DO JJ=1,N2,NB
DO I=I1,MIN(II+NB-1,N1)
DO J=JJ,MIN(JJ+NB-1,N2)

Y (J,1)=X(1,J)
END DO
END DO To expand the outermost loop,
END DO the double-nested loop can be
!$OI'\EAE%ESALLEL - collapsed into a single-nested loop.
DO I=1,N1

CALL IN_CACHE_FFT(Y(L,),N2)
END DO

2018/3/7 SIAM PP18 13



Computation-Communication
Overlap [I[domura et al. 2014]

ISOMP PARALLEL
ISOMP MASTER

MPI| communication

«— MPI communication is performed

on the master thread

'SOMP END MASTER < No barrier synchronization
ISOMP DO SCHEDULE(DYNAMIC)

DO I=1,N
Computation — Computation is performed
END DO by a thread other than the

somp Do < Implicit bgrrl_er
DO I=1,N Synchronization

Computation using the «— Computation is performed

result of communication after completion of the

END DO MPI communication
I$OMP END PARALLEL

master thread

2018/3/7 SIAM PP18 14



Pipelined Computation-
Communication Overlap

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)

2018/3/7 SIAM PP18 15




Automatic Tuning of Parallel 1-D FFT

e The automatic tuning process consists of
two steps:

— Automatic tuning of all-to-all communication

— Selection of the number of divisions NDIV for the
computation-communication overlap

2018/3/7 SIAM PP18 16



Optimizing of All-to-All
Communication

* An optimized all-to-all collective algorithm for
multi-core systems connected using modern

InfiniBand network interfaces [Kumar et al.
08].

* The all-to-all algorithm completes in two steps,
Intra-node exchange and inter-node
exchange.

2018/3/7 SIAM PP18 17



Two-Phase All-to-All Algorithm

 We extend the all-to-all algorithm to the general
case of P = P, X P, MPI processes.

1. Local array transpose from
(N/P%4, P,, P,) to (N/P?, Py, P,),
where N is the total number of elements.
Then P, simultaneous all-to-all communications
across P, MPI processes are performed.

2. Local array transpose from
(N/P%, B, P)to (N/P?, P, P) .
Then P, simultaneous all-to-all communications
across P, MPI processes are performed.

2018/3/7 SIAM PP18

18



Automatic Tuning of All-to-All

Communication

The two-phase all-to-all algorithm requires twice the
total amount of communications compared with the
ring algorithm.

However, for small to medium messages, the two-

phase all-to-all algorithm Is better than the ring
algorithm due to the smaller startup time.

Automatic tuning of all-to-all communication can be
accomplished by performing a search over the
parameters of all of P, and P,.

If P = P, X P, Is a power of two, the size of search
space is log, P.

2018/3/7 SIAM PP18 19



Selection of Number of Divisions for
Computation-Communication Overlap

When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.

2018/3/7 SIAM PP18 20



Performance Results

e To evaluate the parallel 1-D FFT with automatic tuning (AT),
we compared its performance with that of the FFTW 3.3.7,
the FFTE 6.2alpha (http://www.ffte.jp/) and the FFTE
6.2alpha with AT.

« The performance was measured on the Oakforest-PACS at
Joint Center for Advanced HPC (JCAHPC).
— 8208 nodes, Peak 25.008 PFlops
— CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
— Interconnect: Intel Omni-Path Architecture

— Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE)
Intel C compiler 18.0.1.163 (for FFTW)

— Compiler option: “-O3 -xMIC-AVX512 -qopenmp”

— MPI library: Intel MP1 2018.1.163

— flat/quadrant, MCDRAM only, KMP_AFFINITY=compact
— Each MPI process has 64 cores and 64 threads.

2018/3/7 SIAM PP18 21


http://www.ffte.jp/

Results of automatic tuning of parallel 1-D FFTs

(Oakforest-PACS, 1024 nodes)

FFTE 6.2alpha

FFTE 6.2alpha with AT

N P |NDIV| GFlops | P, | B, |[NDIV| GFlops
16M 1024, 4 8.4 256 | 4 1 59.2
64M (1024 4 35.5 128 | 8 1 174.2

256M | 1024 | 4 129.4 64 | 16 1 520.3
1G 1024 4 210.3 32 | 32 1 1415.6
4G 1024, 4 560.0 8 (128 | 1 1573.8

16G (1024| 4 901.6 |1024| 1 1 2858.7
64G 1024, 4 2983.1 (1024 1 2 3984.5

2018/3/7

SIAM PP18

22




Performance of parallel 1-D FFTs
(Oakforest-PACS, 1024 nodes)

4000 —
FFTE
3500 o 6.2alpha (no
0 3000 ] overlap)
o 2500 /l ——FFTE
O 2000 / 6.2a|pt1a
L 1500 e FFTE
1000 4 %alphawith
508 i T~y —%—FFTW 3.3.7
NI SN CIIR CICIINC
KON R

V
Length of transform N

2018/3/7 SIAM PP18 23



Performance of all-to-all communication

(Oakforest-PACS, 1024 nodes)

o 1600 MPI Alltoall
g 1400 -
g 1200 —— Alltoall
< 1000 ;FK“WAV— with AT
< 800
5 600 £ \
= 400 7
% 200 | y A
m O _A-I- =] ] ] ] ] ] ] ] ] ] ] ]

© N X+ & & N

VP ST S

Message size (bytes)

2018/3/7 SIAM PP18 24



Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2"26xnumber of nodes)

EH Communication

B Computation

Time (sec)

1|I|||||”|

©
'\' > \®) ‘1,
Vv \,Q

T T T
CURrUINU WO A

Number of nodes

2018/3/7 SIAM PP18 25



Conclusion

We proposed an implementation of parallel 1-D FFT
with automatic tuning on cluster of Intel Xeon Phi
Processors.

We used a computation-communication overlap
method that introduces a communication thread with
OpenMP.

An automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap, was implemented.

The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on cluster of Intel Xeon Phi processors.

2018/3/7 SIAM PP18 26



	MS2 and MS13�State-of-the-Art FFT --- Algorithms, Implementations, and Applications
	Aim of this minisymposium
	MS2: Part I of II
	MS13: Part II of II
	Implementation of Parallel FFTs on Cluster of Intel Xeon Phi Processors
	Outline
	Background
	Objectives
	Approach
	Six-Step FFT Algorithm [Bailey90]
	Parallel 1-D FFT Algorithm Based on Six-Step FFT
	In-Cache FFT Algorithm and Vectorization
	Optimization of Parallel 1-D FFT on Knights Landing Processor
	Computation-Communication Overlap [Idomura et al. 2014]
	Pipelined Computation-Communication Overlap
	Automatic Tuning of Parallel 1-D FFT
	Optimizing of All-to-All Communication
	Two-Phase All-to-All Algorithm
	Automatic Tuning of All-to-All Communication
	Selection of Number of Divisions for Computation-Communication Overlap
	Performance Results
	Results of automatic tuning of parallel 1-D FFTs (Oakforest-PACS, 1024 nodes)
	スライド番号 23
	スライド番号 24
	スライド番号 25
	Conclusion

