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Aim of this minisymposium 
• The fast Fourier transform (FFT) is widely used in 

many areas of science and engineering. 
• This minisymposium is an opportunity to discuss 

high performance and parallel implementations of 
FFT, mathematical encapsulations of FFT 
algorithms that are amenable to automatic 
implementations tuned to hardware platforms. 

• It is also a venue to discuss applications and 
performance results of FFT on current and 
emerging platforms such as many-core processors, 
GPUs, and distributed-memory systems.  

• http://www.fft.report 
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MS2: Part I of II 
• 1:00-1:20 Implementation of Parallel FFTs on 

Cluster of Intel Xeon Phi Processors 
    Daisuke Takahashi, University of Tsukuba, Japan 
• 1:25-1:45 SPIRAL FFT 
    Franz Franchetti, Carnegie Mellon University, USA 
• 1:50-2:10 Pipelining Fast Fourier Transform on 

the OpenPOWER Cluster 
   Jun Doi, IBM Research - Tokyo, Japan 
• 2:15-2:35 Automatic FFT Kernel Generation for 

CUDA GPUs 
    Akira Nukada, Tokyo Institute of Technology, Japan 
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MS13: Part II of II 
• 3:10-3:30 Fast Fourier Transforms (fft) 
   Samar A. Aseeri, King Abdullah University of   
   Science & Technology (KAUST), Saudi Arabia 
• 3:35-3:55 Use of the Fast Fourier Transform in 

Solving Partial Differential Equations 
    Benson K. Muite, University of Tartu, Estonia 
• 4:00-4:20 Parallel Fast Gauss Transform 
    Hari Sundar, University of Utah, USA 
• 4:25-4:45 Implementation of OpenFFT and Its 

Application to Industrial Problems 
    Truong Vinh Truong Duy, Nissan ARC, Japan 
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Implementation of Parallel FFTs on 
Cluster of Intel Xeon Phi Processors 

Daisuke Takahashi 
Center for Computational Sciences 

University of Tsukuba, Japan 
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Outline 
• Background 
• Objectives 
• Six-Step FFT Algorithm 
• In-Cache FFT Algorithm and Vectorization 
• Computation-Communication Overlap 
• Automatic Tuning of Parallel 1-D FFT 
• Performance Results 
• Conclusion 
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Background 
• The fast Fourier transform (FFT) is widely used in 

science and engineering. 
• Parallel FFTs on distributed-memory parallel 

computers require intensive all-to-all 
communication, which affects their performance. 

• How to overlap the computation and the all-to-all 
communication is an issue that needs to be 
addressed for parallel FFTs. 

• Moreover, we need to select the optimal 
parameters according to the computational 
environment and the problem size. 
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Objectives 
• Several FFT libraries with automatic tuning have 

been proposed. 
– FFTW, SPIRAL, and UHFFT 

• An Implementation of parallel 1-D FFT on cluster of 
Intel Xeon Phi coprocessors has been presented 
[Park et al. 2013]. 

• However, to the best of our knowledge, parallel 1-D 
FFT with automatic tuning on cluster of Intel Xeon 
Phi processors has not yet been reported. 

• We propose an implementation of a parallel 1-D 
FFT with automatic tuning on cluster of Intel Xeon 
Phi processors. 

2018/3/7 SIAM PP18 8 



Approach 
• The parallel 1-D FFT implemented is based on the 

six-step FFT algorithm [Bailey 90], which requires 
two multicolumn FFTs and three data 
transpositions. 

• Using this method, we have implemented an 
automatic tuning facility for selecting the optimal 
parameters of the all-to-all communication and the 
computation-communication overlap. 
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Six-Step FFT Algorithm [Bailey90] 
• Step 1: Transpose 
• Step 2: Perform 𝑛𝑛1 individual 𝑛𝑛2-point  

            multicolumn FFTs 

• Step 3: Perform twiddle factor (𝜔𝜔𝑛𝑛1𝑛𝑛2
𝑗𝑗1𝑘𝑘2 )    

             multiplication 
• Step 4: Transpose 
• Step 5: Perform 𝑛𝑛2 individual 𝑛𝑛1-point  

            multicolumn FFTs 
• Step 6: Transpose 
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Parallel 1-D FFT Algorithm Based on 
Six-Step FFT 

Global 
Transpose 

Global 
Transpose 

Global 
Transpose 

𝑁𝑁1 

𝑁𝑁2 

𝑁𝑁2 

𝑁𝑁1 

𝑁𝑁1 

𝑁𝑁2 
𝑁𝑁1 

𝑁𝑁2 

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 

𝑃𝑃0 𝑃𝑃1 𝑃𝑃2 𝑃𝑃3 

Perform 
twiddle factor 
(𝜔𝜔𝑁𝑁1𝑁𝑁2

𝐽𝐽1𝐾𝐾2 ) 
multiplication 



In-Cache FFT Algorithm and 
Vectorization 

• For in-cache FFT, we used radix-2, 3, 4, 5, 8, 9, 
and 16 FFT algorithms based on the mixed-radix 
FFT algorithms [Temperton 83]. 

• Automatic vectorization was used to access the 
Intel AVX-512 instructions on the Knights Landing 
processor. 

• Although higher radix FFTs require more floating-
point registers to hold intermediate results, the 
Knights Landing processor has 32 ZMM 512-bit 
registers. 
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       COMPLEX*16 X(N1,N2),Y(N2,N1) 
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ) 
      DO II=1,N1,NB 
          DO JJ=1,N2,NB 
              DO I=II,MIN(II+NB-1,N1) 
                  DO J=JJ,MIN(JJ+NB-1,N2) 
                      Y(J,I)=X(I,J) 
                  END DO 
              END DO 
          END DO 
      END DO 
!$OMP PARALLEL DO 
      DO I=1,N1 
          CALL IN_CACHE_FFT(Y(1,I),N2) 
      END DO 
      … 

To expand the outermost loop, 
the double-nested loop can be 
collapsed into a single-nested loop. 
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Optimization of Parallel 1-D FFT on 
Knights Landing Processor 



Computation-Communication 
Overlap [Idomura et al. 2014] 

 
!$OMP PARALLEL 
!$OMP MASTER 
 
 
!$OMP END MASTER 
!$OMP DO SCHEDULE(DYNAMIC) 
       DO I=1,N 
 
 
       END DO 
!$OMP DO 
       DO I=1,N 
 
 
 
       END DO 
!$OMP END PARALLEL 

MPI communication 

Computation 

Computation using the 
result of communication 

← MPI communication is performed 
     on the master thread 

← Implicit barrier 
    synchronization  

← Computation is performed 
     by a thread other than the 
     master thread 

← No barrier synchronization  
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← Computation is performed 
     after completion of the 
     MPI communication 



Pipelined Computation-
Communication Overlap 

Without 
overlap 

Overlap 
(NDIV=2) 

Overlap 
(NDIV=4) 

Computation Communication 

Comp. Comm. 
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Automatic Tuning of Parallel 1-D FFT 

• The automatic tuning process consists of 
two steps: 
– Automatic tuning of all-to-all communication 
– Selection of the number of divisions NDIV for the 

computation-communication overlap 
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Optimizing of All-to-All 
Communication 

• An optimized all-to-all collective algorithm for 
multi-core systems connected using modern 
InfiniBand network interfaces [Kumar et al. 
08]. 

• The all-to-all algorithm completes in two steps, 
intra-node exchange and inter-node 
exchange. 
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Two-Phase All-to-All Algorithm 
• We extend the all-to-all algorithm to the general 

case of 𝑃𝑃 = 𝑃𝑃𝑥𝑥 × 𝑃𝑃𝑦𝑦 MPI processes. 
1. Local array transpose from 

           (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦) to (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑦𝑦, 𝑃𝑃𝑥𝑥) , 
where 𝑁𝑁 is the total number of elements. 

     Then 𝑃𝑃𝑦𝑦 simultaneous all-to-all communications  
     across 𝑃𝑃𝑥𝑥 MPI processes are performed. 
2.  Local array transpose from 
            (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑦𝑦, 𝑃𝑃𝑥𝑥) to (𝑁𝑁/𝑃𝑃2, 𝑃𝑃𝑥𝑥, 𝑃𝑃𝑦𝑦) . 
     Then 𝑃𝑃𝑥𝑥 simultaneous all-to-all communications 
     across 𝑃𝑃𝑦𝑦 MPI processes are performed. 
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Automatic Tuning of All-to-All 
Communication 

• The two-phase all-to-all algorithm requires twice the 
total amount of communications compared with the 
ring algorithm. 

• However, for small to medium messages, the two-
phase all-to-all algorithm is better than the ring 
algorithm due to the smaller startup time. 

• Automatic tuning of all-to-all communication can be 
accomplished by performing a search over the 
parameters of all of 𝑃𝑃𝑥𝑥 and 𝑃𝑃𝑦𝑦. 

• If 𝑃𝑃 = 𝑃𝑃𝑥𝑥 × 𝑃𝑃𝑦𝑦 is a power of two, the size of search 
space is log2 𝑃𝑃. 
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Selection of Number of Divisions for 
Computation-Communication Overlap 

• When the number of divisions for computation-
communication overlap is increased, the overlap ratio 
also increases. 

• On the other hand, the performance of all-to-all 
communication decreases due to reducing the 
message size. 

• Thus, a tradeoff exists between the overlap ratio and 
the performance of all-to-all communication. 

• The default overlapping parameter of the original FFTE 
6.2alpha is NDIV=4. 

• In our implementation, the overlapping parameter 
NDIV is varied between 1, 2, 4, 8 and 16. 

20 2018/3/7 SIAM PP18 



Performance Results 
• To evaluate the parallel 1-D FFT with automatic tuning (AT), 

we compared its performance with that of the FFTW 3.3.7, 
the FFTE 6.2alpha (http://www.ffte.jp/) and  the FFTE 
6.2alpha with AT. 

• The performance was measured on the Oakforest-PACS at 
Joint Center for Advanced HPC (JCAHPC). 
– 8208 nodes, Peak 25.008 PFlops 
– CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz) 
– Interconnect: Intel Omni-Path Architecture 
– Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE) 

                 Intel C compiler 18.0.1.163 (for FFTW) 
– Compiler option: “-O3 -xMIC-AVX512 -qopenmp” 
– MPI library: Intel MPI 2018.1.163 
– flat/quadrant, MCDRAM only, KMP_AFFINITY=compact 
– Each MPI process has 64 cores and 64 threads. 
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Results of automatic tuning of parallel 1-D FFTs 
(Oakforest-PACS, 1024 nodes) 

N 𝑃𝑃 NDIV GFlops 𝑃𝑃𝑥𝑥 𝑃𝑃𝑦𝑦 NDIV GFlops 
16M 1024 4 8.4 256 4 1 59.2 

64M 1024 4 35.5 128 8 1 174.2 

256M 1024 4 129.4 64 16 1 520.3 

1G 1024 4 210.3 32 32 1 1415.6 

4G 1024 4 560.0 8 128 1 1573.8 

16G 1024 4 901.6 1024 1 1 2858.7 

64G 1024 4 2983.1 1024 1 2 3984.5 

FFTE 6.2alpha FFTE 6.2alpha with AT 
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Performance of parallel 1-D FFTs
（Oakforest-PACS，1024 nodes）
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Performance of all-to-all communication
（Oakforest-PACS，1024 nodes）
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Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2^26×number of nodes)
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Conclusion 
• We proposed an implementation of parallel 1-D FFT 

with automatic tuning on cluster of Intel Xeon Phi 
processors. 

• We used a computation-communication overlap 
method that introduces a communication thread with 
OpenMP. 

• An automatic tuning facility for selecting the optimal 
parameters of the all-to-all communication and the 
computation-communication overlap, was implemented. 

• The performance results demonstrate that the 
proposed implementation of a parallel 1-D FFT with 
automatic tuning is efficient for improving the 
performance on cluster of Intel Xeon Phi processors. 
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