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Aim of this minisymposium

* The fast Fourier transform (FFT) is widely used In
many areas of science and engineering.

e This minisymposium is an opportunity to discuss
high performance and parallel implementations of
FFT, mathematical encapsulations of FFT
algorithms that are amenable to automatic
Implementations tuned to hardware platforms.

e |tis also a venue to discuss applications and
performance results of FFT on current and
emerging platforms such as many-core processors,
GPUs, and distributed-memory systems.

o http://www.fft.report
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http://www.fft.report/

MS2: Part | of Il

1:00-1:20 Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi, University of Tsukuba, Japan
1:25-1:45 SPIRAL FFT
Franz Franchetti, Carnegie Mellon University, USA

1:50-2:10 Pipelining Fast Fourier Transform on
the OpenPOWER Cluster

Jun Dol, IBM Research - Tokyo, Japan

2:15-2:35 Automatic FFT Kernel Generation for
CUDA GPUs

Akira Nukada, Tokyo Institute of Technology, Japan

2018/3/7 SIAM PP18



MS13: Part Il of Il

3:10-3:30 Fast Fourier Transforms (fft)

Samar A. Aseeri, King Abdullah University of
Science & Technology (KAUST), Saudi Arabia

3:35-3:55 Use of the Fast Fourier Transform in
Solving Partial Differential Equations

Benson K. Muite, University of Tartu, Estonia
4:00-4:20 Parallel Fast Gauss Transform
Hari Sundar, University of Utah, USA

4:25-4:45 Implementation of OpenFFT and Its
Application to Industrial Problems

Truong Vinh Truong Duy, Nissan ARC, Japan
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Implementation of Parallel FFTs on
Cluster of Intel Xeon Phi Processors

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan
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Background

The fast Fourier transform (FFT) is widely used in
science and engineering.

Parallel FFTs on distributed-memory parallel
computers require intensive all-to-all
communication, which affects their performance.

How to overlap the computation and the all-to-all
communication is an issue that needs to be
addressed for parallel FFTs.

Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.
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Objectives

Several FFT libraries with automatic tuning have
been proposed.

— FFTW, SPIRAL, and UHFFT

An Implementation of parallel 1-D FFT on cluster of
ntel Xeon Phi coprocessors has been presented
Park et al. 2013].

However, to the best of our knowledge, parallel 1-D
~FT with automatic tuning on cluster of Intel Xeon
Phi processors has not yet been reported.

We propose an implementation of a parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors.
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Approach

 The parallel 1-D FFT implemented is based on the
six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

e Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap.
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Six-Step FFT Algorithm [Bailey90]

e Step 1: Transpose

o Step 2: Perform n, individual n,-point
multicolumn FFTs

e Step 3: Perform twiddle factor (w“kz)
multiplication

e Step 4: Transpose

e Step 5: Perform n, individual n,-point
multicolumn FFTs

e Step 6: Transpose
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Parallel 1-D FFT Algorithm Based on

N Six-Step FFT
Z N
1 Perform
Global twiddle factor
Transpose (wl{lll’lflzz)
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Transpose

N

Global
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In-Cache FFT Algorithm and

Vectorization

 Forin-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

e Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
pProcessor.

» Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.
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Optimization of Parallel 1-D FFT on
Knights Landing Processor

COMPLEX*16 X(N1,N2),Y(N2,N1)
ISOMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
DO I1=1,N1,NB
DO JJ=1,N2,NB
DO I=I1,MIN(II+NB-1,N1)
DO J=JJ,MIN(JJ+NB-1,N2)

Y (J,1)=X(1,J)
END DO
END DO To expand the outermost loop,
END DO the double-nested loop can be
!$OI'\EAE%ESALLEL - collapsed into a single-nested loop.
DO I=1,N1

CALL IN_CACHE_FFT(Y(L,),N2)
END DO
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Computation-Communication
Overlap [I[domura et al. 2014]

ISOMP PARALLEL
ISOMP MASTER

MPI| communication

«— MPI communication is performed

on the master thread

'SOMP END MASTER < No barrier synchronization
ISOMP DO SCHEDULE(DYNAMIC)

DO I=1,N
Computation — Computation is performed
END DO by a thread other than the

somp Do < Implicit bgrrl_er
DO I=1,N Synchronization

Computation using the «— Computation is performed

result of communication after completion of the

END DO MPI communication
I$OMP END PARALLEL

master thread
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Pipelined Computation-
Communication Overlap

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)
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Automatic Tuning of Parallel 1-D FFT

e The automatic tuning process consists of
two steps:

— Automatic tuning of all-to-all communication

— Selection of the number of divisions NDIV for the
computation-communication overlap
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Optimizing of All-to-All
Communication

* An optimized all-to-all collective algorithm for
multi-core systems connected using modern

InfiniBand network interfaces [Kumar et al.
08].

* The all-to-all algorithm completes in two steps,
Intra-node exchange and inter-node
exchange.
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Two-Phase All-to-All Algorithm

 We extend the all-to-all algorithm to the general
case of P = P, X P, MPI processes.

1. Local array transpose from
(N/P%4, P,, P,) to (N/P?, Py, P,),
where N is the total number of elements.
Then P, simultaneous all-to-all communications
across P, MPI processes are performed.

2. Local array transpose from
(N/P%, B, P)to (N/P?, P, P) .
Then P, simultaneous all-to-all communications
across P, MPI processes are performed.
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Automatic Tuning of All-to-All

Communication

The two-phase all-to-all algorithm requires twice the
total amount of communications compared with the
ring algorithm.

However, for small to medium messages, the two-

phase all-to-all algorithm Is better than the ring
algorithm due to the smaller startup time.

Automatic tuning of all-to-all communication can be
accomplished by performing a search over the
parameters of all of P, and P,.

If P = P, X P, Is a power of two, the size of search
space is log, P.
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Selection of Number of Divisions for
Computation-Communication Overlap

When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.
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Performance Results

e To evaluate the parallel 1-D FFT with automatic tuning (AT),
we compared its performance with that of the FFTW 3.3.7,
the FFTE 6.2alpha (http://www.ffte.jp/) and the FFTE
6.2alpha with AT.

« The performance was measured on the Oakforest-PACS at
Joint Center for Advanced HPC (JCAHPC).
— 8208 nodes, Peak 25.008 PFlops
— CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
— Interconnect: Intel Omni-Path Architecture

— Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE)
Intel C compiler 18.0.1.163 (for FFTW)

— Compiler option: “-O3 -xMIC-AVX512 -qopenmp”

— MPI library: Intel MP1 2018.1.163

— flat/quadrant, MCDRAM only, KMP_AFFINITY=compact
— Each MPI process has 64 cores and 64 threads.
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Results of automatic tuning of parallel 1-D FFTs

(Oakforest-PACS, 1024 nodes)

FFTE 6.2alpha

FFTE 6.2alpha with AT

N P |NDIV| GFlops | P, | B, |[NDIV| GFlops
16M 1024, 4 8.4 256 | 4 1 59.2
64M (1024 4 35.5 128 | 8 1 174.2

256M | 1024 | 4 129.4 64 | 16 1 520.3
1G 1024 4 210.3 32 | 32 1 1415.6
4G 1024, 4 560.0 8 (128 | 1 1573.8

16G (1024| 4 901.6 |1024| 1 1 2858.7
64G 1024, 4 2983.1 (1024 1 2 3984.5
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Performance of parallel 1-D FFTs
(Oakforest-PACS, 1024 nodes)
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Performance of all-to-all communication

(Oakforest-PACS, 1024 nodes)
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Breakdown of execution time in FFTE 6.2alpha (no
overlap, Oakforest-PACS, N=2"26xnumber of nodes)
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Conclusion

We proposed an implementation of parallel 1-D FFT
with automatic tuning on cluster of Intel Xeon Phi
Processors.

We used a computation-communication overlap
method that introduces a communication thread with
OpenMP.

An automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap, was implemented.

The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on cluster of Intel Xeon Phi processors.
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