PARALLEL FAST GAUSS TRANSFORM

Hari Sundar¹, Shravan Veerapaneni², Rahul Sampath³

SIAM Parallel Processing for Scientific Computing Tokyo, Japan 7 Mar 2018

- 1. School of Computing, University of Utah
- 2. University of Michigan
- 3. Exxon Mobile

Fast algorithms to compute discrete sums of the form:

$$F(x_j) = \sum_{k=1}^N G_{\delta}(\|x_j - y_k\|) f(y_k) \text{ at } \{x_j \mid j = 1, ..., N\}$$

 $x \rightarrow targets$

 $y \rightarrow$ sources

f
ightarrow source strength $x,y \in [0,1]^d$

 G_{δ} is a *Gaussian-type* kernel space-limited band-limited e.g., $G_{\delta} = \|x\|^2 e^{-\frac{\|x\|^2}{\delta}}$ Näive algorithm is $\mathcal{O}(N^2)$

PDE		
$\partial_t u = \triangle u$	in	ω
$\partial u/\partial n = g$	on	γ

	PDE	Kernels
Diffusion Reaction-diffusion	$\partial_t u = \triangle u$ $\partial_t u = \triangle u + u^2$	$\ x\ ^{2n}e^{-\frac{\ x\ ^2}{\delta}}$
Unsteady Stokes	$\partial_t \mathbf{u} = -\nabla P + \triangle \mathbf{u}$	$\left(\mathbf{I} - \frac{2x \otimes x}{\ x\ ^2}\right) e^{-\frac{\ x\ ^2}{\delta}}$
Navier-Stokes	$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla P + \Delta \mathbf{u}$	$\left(\mathbf{I} - \frac{4x \otimes x}{\ x\ ^2}\right) \left(rac{1 - e^{-rac{\ x\ ^2}{\delta}}}{\ x\ ^2} ight)$
		$\left(\mathbf{I} - \frac{4x \otimes x}{\ x\ ^2}\right) \left(\delta \frac{1 - e^{-\frac{\ x\ ^2}{\delta}}}{\ x\ ^2} - e^{-\frac{\ x\ ^2}{\delta}}\right)$

Sequential

Greengard & Strain, 1991 Strain, 1991 Greengard & Sun, 1998 Sun & Bao, 2002 Yang et al., 2003 Spivak et al., 2010 FGT - Hermite expansions variable scales Plane wave expansions Kronecker-product rep. high-dimensional FGT for KDEs Generalized FGT

Parallel

 $\begin{array}{ll} \mbox{Yamamato, 2006} & 1\mbox{D, } n_p \leq 16, N = \mathcal{O}(100) \\ \mbox{Yokota et al., 2009} & \mbox{RBFs, not optimal if Gaussian spread is large} \end{array}$

OVERVIEW OF FGT

TRUNCATION

 δ controls the decay of the kernel If δ is small,

for each x $F(x) = \sum_{y \in \mathcal{I}[x]} G_{\delta}(\|x-y\|) f(y)$ end

Sequential complexity: $\mathcal{O}(p^d N)$ Embarassingly parallel EXPANSION

$$e^{-\|x-y\|^2/\delta} \approx \sum_{|k| \le p} \hat{G}(k) e^{i\lambda k \cdot (x-y)}$$
$$\hat{G}(k) = \left(\frac{L}{2p\sqrt{\pi}}\right)^3 e^{-\frac{\lambda^2 |k|^2 \delta}{4}}, \quad \lambda = \frac{L}{p\sqrt{\delta}}$$

1.3 e 1 * 1	•		1 1 A	** * • • •
1 N 1 N 1		·** • • •		
1.	1.10	•• . *•.	1.1.1.1	A. 1.4
		-		
	61 T N	1.1.1.1	1.1	2 . F . S
100 C	1. 1. 1. 1.	- I	1.12	
				1
				1.11
		5 de 16 -		1
	•.			
1 2 2	1.0	1.1	1.00	1. 1. 1. 1. 1. 1.
	1 · · · ·	• 1.5	• •	1 N 1
	1.1	1. 1. 1.		12.1 1 1 1 1
11 A.			1.2.2.4	Sec. 25. 2
	1 1 1			
	- 10 M		•	2. s 1 1 1
	· · · ·		10 1	1. 1. 1. 1. 1.
1 N 1 1 1 1	· · · ·	- S - 11	ST 6 1	••••••
See. 1. 1.	1.11	1. 1.	1.11	1.14
· · · · · · · · · · · · · · · · · · ·	• • • * •		•	1 . T.
	1.25 10	· · · · · ·	4.1 J	1211-131
	•• •	12 1	1.1	
1 12 121	1.5	1.00	•	
	1.1	 1 	1.1	SW LT
		SI		112 A. A.

Partition the domain into uniform boxes of size $\sqrt{\delta}$ A fixed number (K^d) of neighboring boxes influence targets in a particular box

EXPANSION

(S2W) Sources to Wave expansions
$$\mathcal{O}(p^d N)$$

(W2L) Wave to Local expansions $\mathcal{O}(K^d p^d N_{\text{box}})$
 $w_k = \sum_{y \in B} f(y) e^{i\lambda k \cdot (c^B - y)}$
 $v_k + = w_k e^{i\lambda k \cdot (c^D - c^B)}$
(L2T) Local expansion to Targets $\mathcal{O}(p^d N)$
 $F(x) = \sum_{|k| \le p} \hat{G}(k) v_k e^{i\lambda k \cdot (x - c^D)}$

----/ 1 - ->

		×	×	×	×	×	×	×	×	
- 영상 이 것 이 것 같은		×	×	×	×	\times	×	×	×	
[김 씨가 집 기 기 기 기 기		×	×	×	×	\times	×	×	×	
김 씨에 있는 이 소송	S2W	×	×	×	×	×	×	×	×	W2L × × × L2T
- 저는 실망가 물을 것 같	\rightarrow	×	×	×	×	\times	×	×	×	
		×	×	×	×	×	×	×	×	\times \times \times
- 김희희 나는 동네 관계		×	×	×	×	×	×	×	×	
		×	×	×	×	×	×	×	×	

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $arepsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $arepsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

		+				
		+				
		+				
		+				
		+				
		+				
		+				
		+				
		+				
		+				
		+				
		+				

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

		+			
		+			
		+			
		+			
		+			
		+			
		+			
		+			
		+			
		+			
		+			
		+			

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

-			+			
-			+			
-			+			
-			+			
-			+			
-			+			
-			+			
-			+			
-			+			
-			+			
-			+			
-			+			

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

-		+		
-		+		
-		+		
-		+		
-		+		
-		+		
-		+		
-		+		
-		+		
-		+		
-		+		
-		+		

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $arepsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

	-			+		
	-			+		
	-			+		
	I			+		
	-			+		
	-			+		
	-			+		
	-			+		
	-			+		
	-			+		
	-			+		
	-			+		

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $arepsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	
	-			+	

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	
		-			+	

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

		-			$\left +\right $
		-			+
		-			+
		-			+
		-			+
		-			+
		-			+
		-			+
		-			+
		-			+
		-			+
		-			+

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $arepsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

			-			
			-			
			-			
			-			
			-			
			-			
			-			
			-			
			-			
			-			
			-			
			-			

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $arepsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		
			-		

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		
				-		

$$K^3p^3
ightarrow 9p^3$$
 (K = 13 for $\epsilon = 10^{-12}$)

$$v^{j+1} = \beta v^j - \alpha^l w^l + \alpha^r w^r$$

Sparse Volume distribution

Surface Distribution

Global sweep *fills-in* empty boxes Higher storage and computional costs

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

Direct translation for first layer

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

-			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

-			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

-			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

-			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

-			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

$$\begin{split} v_k^{(i+1,j+1)} &= \sum_{\xi} (-1)^{1+d+\mathcal{M}(\xi)} e^{i\lambda k \cdot \xi} v_k^{(i,j)+\xi} \\ &+ \sum_{\chi} (-1)^{1+d+\mathcal{M}(\chi)} e^{i\lambda k \cdot \chi} w_k^{(i,j)+\chi}. \end{split}$$

_			+
	i,j+1	i+1,j+1	
	i,j	i+1,j	
_			_

Find an ordering that maximizes overlap of consecutive interaction lists

reduce to finding a minimum spanning tree use Kruskal's algorithm $\mathcal{O}(K^2p^3) \rightarrow \mathcal{O}(Kp^3)$

	$K = 9, \epsilon$	$x = 10^{-6}$	
B	direct	MST	ratio
1 <i>K</i>	114K	18K	6.3
10K	1M	182K	5.88
100K	9.65M	1.7M	5.68
1 <i>M</i>	96.8M	17.1 <i>M</i>	5.68

$K = 13, \epsilon = 10^{-12}$			
B	direct	MST	ratio
1 <i>K</i>	238K	24 <i>K</i>	9.65
10K	2.2 <i>M</i>	264K	8.48
100K	20.2M	2.5M	8.18
1M	200.6M	24.5M	8.18

NONUNIFORM DISTRIBUTIONS

Many sources per FGT box - Expansion

Few sources per FGT box - Truncation

Non-uniform distributions - Hybrid

Max. of m points per leaf

Max. of *m* points per leaf Higher point density \Rightarrow finer leaves

Max. of *m* points per leaf Higher point density \Rightarrow finer leaves

Large leaves \Rightarrow Truncation (Direct)

Small leaves \Rightarrow Expansion (Expand)

Source -yTarget -xDirect tree $-T_d$ Expand tree $-T_e$

Source -yTarget -xDirect tree $-T_d$

$$F(x) + = \sum_{|k| \le p} \hat{G}(k) w_k e^{i\lambda k \cdot (x - c^B)}$$

Expand tree
$$-T_e$$

Source -yTarget -xDirect tree $-T_d$

$$v_k + = f(y)e^{i\lambda k \cdot (c^D - y)}$$

Expand tree
$$-T_e$$

Source -yTarget -xDirect tree $-T_d$ Expand tree $-T_e$ $F(x) + = G_{\delta}(||x - y||)f(y)$

Distributed regular grid of FGT boxes

Each box owned by an unique CPU Each CPU owns a sub-grid of boxes PETSc package

Distributed octree

Each leaf owned by an unique CPU Sorted in Morton (space-filling) order Direct and Expand trees partitioned independently

Dendro package

Distributed points – mapped to enclosing leaf

Step	Computation	Communication
S2W	Compute wave expansions for Expand	Send wave expansions to FGT boxes
	sources	
W2D	Update transform at Direct targets	Send wave expansions to Direct targets
D2D	Update transform at Direct targets	Send Direct sources to Direct targets
W2L	Execute translation/sweeping algorithm	Communicate wave expansions of ghost
		FGT boxes
D2L	Update local expansions of FGT boxes us-	Send contributions from Direct sources
	ing contributions from Direct sources	to FGT boxes
L2T	Compute transform at Expand targets	Send local expansions to Expand targets

RESULTS

ISOGRANULAR SCALABILITY - UNIFORM

ISOGRANULAR SCALABILITY - GAUSSIAN

A novel translation scheme

lower computational and storage costs

A novel octree-based algorithm for highly nonuniform distributions

optimal in all ranges of δ

Massively parallel algorithm for nonuniform distributions

excellent scalability

Supports any Gaussian-type kernel

Tree Codes

Reducing the constants

Hermite to plane-wave conversion

Overlap communication with computation

Code release under GNU -GPL github.com/paralab/pgft

Additional machinery required for *black-box* integral equation solvers for general parabolic PDEs

QUESTIONS?