
Use of the Fast Fourier Transform in Solving
Partial Differential Equations

B.K. Muite

http://kodu.ut.ee/˜benson
http://en.wikibooks.org/wiki/Parallel Spectral Numerical Methods

7 March 2018

Outline

Motivation
A warm up example: KdV equation
Navier-Stokes equation
Klein-Gordon equation
Outlook

Motivation

Kassam 2003 “Solving PDEs 10 times faster”
Use FFT to allow investigation of solutions to partial
differential equations
Fast, accurate, easy to modify if appropriate infrastructure
is available
For exploration, ability to quickly program and run is
important
Usually want to start at desktop scale simulation and
transition to supercomputer to allow for wider exploration of
phenomena encoded in the differential equation
Data storage, analysis and visualization can be a
challenge for large scale simulations
Most cases consider semi-linear partial differential
equations

Kassam 2003 “Solving PDEs 10 times faster”

Demonstrate work vs. accuracy for different time stepping
schemes - original presentation included figure from
Kassam (2003)
Convergence of exponential time differencing fourth order
Runge Kutta method for the 2D Gray-Scott equations from
Kassam (2003) “Solving PDEs 10 times faster” http://
eprints.maths.ox.ac.uk/1192/1/NA-03-16.pdf

http://eprints.maths.ox.ac.uk/1192/1/NA-03-16.pdf
http://eprints.maths.ox.ac.uk/1192/1/NA-03-16.pdf

Computational Efficiency for Gray Scott equations

Computational efficiency for solving the Gray Scott
equations using higher order time stepping schemes, M.T.
Warnez and B.K. Muite “Reduced temporal convergence
rates in high-order splitting schemes”
https://arxiv.org/pdf/1310.3901.pdf

https://arxiv.org/pdf/1310.3901.pdf

KdV-Burgers equation

ut = uux + αuxx − βuxxx

Simple case where can examine interplay between
dispersion and dissipation

d
dt

∫
u2

2
dx =

∫
d

dx
u3

3
− αu2

x + β
d

dx
u2

x
2

dx

d
dt

∫
u2

2
dx = −α

∫
u2

x dx

Want numerical method to also reflect conservation laws
For small values of α and ε can get small scale spatial and
temporal features that require high resolution
Want high order methods in space and time

Time stepping methods

Usually 4th order Runge-Kutta
Tend to prefer methods that satisfy energy like conserved
quantities in the equation, implicit midpoint rule, implicit
Runge-Kutta
Give long time simulations that should be closer to a
typical solution of the real equation
Implicit time stepping requires iteration for nonlinear terms
- not ideal for Fourier transform, though in many cases
fixed point iteration is ok.

KdV-Burgers equation

ut = uux + αuxx − βuxxx

Implicit midpoint rule

un+1 − un

δt
=

(
un+1 + un) (un+1

x + un
x

)
4

+
α

2

(
un+1

xx + un
xx

)
− β

2

(
un+1

xxx + un
xxx

)

KdV-Burgers equation

ut = uux + αuxx − βuxxx

Second order backward differentiation and second order
extrapolation

3un+1 − 2un + un−1

δt
=2unun

x − un−1un−1
x

+ αun+1
xx − βun+1

xxx

KdV-Burgers equation

ut = uux + αuxx − βuxxx

Second order Strang splitting

un+1/3 − un

0.5δt
=

(
un+1/3 + un) (un+1/3

x + un
x

)
4

ûn+2/3 = exp
[(
αk2

x − βk3
x

)
δt
]

ûn+1/3

un+1 − un+2/3

0.5δt
=

(
un+1 + un+2/3) (un+1

x + un+2/3
x

)
4

Can use a finite volume scheme for Burgers equation
ut = uux

KdV-Burgers equation

ut = uux + αuxx − βuxxx

Carpenter Kennedy Runge Kutta
1: procedure RUNGE–KUTTA(u)
2: h = 0
3: u = un

4: for k = 1→ 5 do
5: h← g(u) + σkh
6: µ = 0.5δt(ζk+1 − ζk)
7: v− µl(v) = u + γkδth + µl(u)
8: u← v
9: end for

10: un+1 = u
11: end procedure
l(u) = αuxx − βuxxx

g(u) = uux

KdV-Burgers equation

ut = uux + αuxx − βuxxx

Fourth order implicit Runge Kutta

f (Y) := YYx + αYxx − βYxxx

Y1 = un + (δt)

[
1
4

f (Y1) +

(
1
4
−
√

3
6

)
f (Y2)

]

Y2 = un + (δt)

[(
1
4

+

√
3

6

)
f (Y1) +

1
4

f (Y2)

]
un+1 = un + 0.5 (δt) [Y1 + Y2]

use fixed point iteration and FFT

3D Navier-Stokes equation Equivalent Formulation

Simplification of equation with periodic boundary
conditions

ρ
(
∂u
∂t + u · ∇u

)
= −∇p + µ∆u (1)

∇ · u = 0 (2)
so

∇ ·
[
ρ
(
∂u
∂t + u · ∇u

)]
= ∇ · [−∇p + µ∆u] (3)

ρ∇ · (u · ∇u) = −∆p (4)
p = ∆−1 [∇ · (u · ∇u)] (5)

so
ρ
(
∂u
∂t + u · ∇u

)
= −ρ∇

(
∆−1 [∇ · (u · ∇u)]

)
+ µ∆u (6)

3D Equivalent Formulation - Implicit Midpoint Time
Discretization

ρ

[
un+1,j+1 − un

δt
+

un+1,j + un

2
· ∇
(

un+1,j + un

2

)]
= ρ
∇
[
∆−1 (∇ · [(un+1,j + un) · ∇(un+1,j + un)

])]
4

+ µ∆
un+1,j+1 + un

2
,

Video of Taylor Green Vortex
http://vimeo.com/87981782

http://vimeo.com/87981782

3D Equivalent Formulation - Carpenter-Kennedy
Discretization

1: procedure RUNGE–KUTTA(u)
2: h = 0
3: u = un

4: for k = 1→ 5 do
5: h← g(u) + βkh
6: µ = 0.5δt(αk+1 − αk)
7: v− µl(v) = u + γkδth + µl(u)
8: u← v
9: end for

10: un+1 = u
11: end procedure

Performance

δt = 0.005 for 5123 grid points.
For IMR scheme, fixed point iteration procedure was
stopped once the difference between two successive
iterates was less than 10−10 in l∞ norm of velocity fields.

Method Grid Size Cores Time Steps Time (s) Core Hours
Timestep

IMR 5123 1024 500 9899 5.68
CK 5123 4096 2000 7040 4.0

Performance of Fourier pseudospectral code on Shaheen. IMR is an
abbreviation for implicit midpoint rule and CK is an abbreviation for
Carpenter–Kennedy.

Kinetic Energy Evolution

0 2 4 6 8 10

0.08

0.09

0.1

0.11

0.12

0.13

Time

En
er

gy

Kinetic Energy

IMR 256
IMR 512
CK 512
Reference

KE of solutions are so close they are almost indistinguishable

Kinetic Energy Dissipation Rate

0 2 4 6 8 100

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Time

En
er

gy
 D

is
si

pa
tio

n
R

at
e

Kinetic Energy Dissipation Rate

IMR 256
IMR 512
CK 512
Reference

Plot during the initial stage, where flow is essentially inviscid and
laminar. Fully developed turbulent flow is observed around tmax ≈ 8.

Kinetic Energy Dissipation Rate

0 2 4 6 8 10−5

0

5

10

15 x 10−4

Time

En
er

gy
 D

is
si

pa
tio

n
R

at
e

Kinetic Energy Dissipation Rate

IMR 256 − Reference
IMR 512 − Reference
CK 512 − Reference

Difference in kinetic energy dissipation rates between the current
discretizations and the reference solution.

Vorticity

Square of the vorticity in the plane centered at (π,0,0) with normal
vector (1,0,0).

Discrete energy equality for midpoint rule

‖u(t = T)‖2l2 − ‖u(t = 0)‖2l2 = −µ
∫ T

0
‖∇u‖2l2dt

‖uN‖2l2 − ‖u
0‖2l2 = −µ

4

N−1∑
n=0

∥∥∥∇(Un + Un+1
)∥∥∥2

l2
δt .

Conclusion on Navier Stokes Equations

At almost the same computational cost, both 2nd-order
accurate IMR and 4th-order Carpenter-Kennedy time
stepping method, capture same amount of detail of the
flow for 5123.

The Real Cubic Klein-Gordon Equation

utt −∆u + u = |u|2u

Full application benchmark
Depending on temporal discretization, can incorporate
solution of linear system
Can also incorporate accuracy
With an instrumented reference code, can obtain a large
number of system characteristics

E(u,ut) =

∫
1
2
|ut |2 +

1
2
|u|2 +

1
2
|∇u|2 − 1

4
|u|4 dx

Videos by Brian Leu, Albert Liu, Michael Quell and
Parth Sheth

http://www-personal.umich.edu/˜brianleu/

http://www.michaelquell.at/

http://www-personal.umich.edu/~brianleu/
http://www.michaelquell.at/

Scaling study Brian Leu, Albert Liu, and Parth Sheth

104 105 106

Number of Cores

100

101

102

C
o
m
p
u
ta
ti
o
n
 T
im

e
 (
s)

No output
Profiling with Tau
Ideal

Strong scaling on Mira for a 40963 discretization

Numerical Scheme

un+1 − 2un + un−1

δt2 −∆
un+1 + 2un + un−1

4

+
un+1 + 2un + un−1

4
=
∣∣un∣∣2 un

un ≈ u(nδt , x , y , z)

Time stepping takes place in Fourier space
Solution of linear system of equations is easy in Fourier
space, though can also be done by iterative methods in
real space
Two FFTs per time step

Scaling with Cores

Scaling results showing computation time for 30 time steps
as a function of the number of processor cores. A
discretization of 5123 points was used.

Scaling with Cores

Scaling results showing computation time for 30 time steps
as a function of total on chip bandwidth defined as the
maximum theoretical bandwidth from RAM on a node
multiplied by the number of nodes used. A discretization of
5123 points was used.

A Runtime Estimation Model

d1, d2, d3 system and implementation dependent constants
N number of grid points in each dimension, assumed to be
the same in all three dimensions
Ln minimum network latency, Bc average bandwidth to a
core from RAM
p number of processes
Assume a hypercube network - speed optimal for FFT

d1 × N3 + d2 × [N log(N)]3

Bc × p
+ 2Ln + d3 log(p)

A Ranking

Rank Machine Time Cores Manufacturer Node Total
Name (s) used and Model Type Cores

1 Hornet 0.319 12,288 Cray XC40 2x12 core Intel Xeon 94,656
2.5 GHz E5-2680v3

2 Juqueen 0.350 262,144 IBM 16 core 1.6 GHz 458,752
Blue Gene/Q Power PC A2

3 Stampede 0.581 8,162 Dell 2x8 core Intel Xeon 462,462
Power Edge 2.7 GHz E5-2680

4 Shaheen 1.66 16,384 IBM 4 core 0.85 GHz 65,536
Blue Gene/P PowerPC 450

5 K computer 2.346 8,192 Fujitsu 1x8 core 663,552
SPARC64 VIIIFX

6 MareNostrum 4.00 64 IBM 2x8 core Intel Xeon 48,384
III DataPlex 2.6 GHz E5-2670

7 Hector 7.66 1024 Cray XE6 2x16 core AMD Opteron 90,112
2.3 GHz 6276 16C

8 VSC2 9.03 1024 Megware 2x8 core AMD Opteron 21,024
2.2 GHz 6132HE

9 Beacon 9.13 256 Appro 2x8 core Intel Xeon 768
2.6 GHz E5-2670

10 Monte Rosa 11.9 1,024 Cray XE6 2x16 core AMD Opteron 47,872
2.1 GHz 6272

11 Titan 17.0 256 Cray XK7 16 core AMD Opteron 299,008
2.2 GHz 6274

12 Vedur 18.6 1,024 HP ProLiant 2x16 core AMD Opteron 2,560
DL165 G7 2.3 GHz 6276

13 Aquila 22.4 256 ClusterVision 2x4 core Intel Xeon 800
2.8 GHz E5462

14 Neser 118.7 128 IBM System 2x4 core Intel Xeon 1,024
X3550 2.5 GHz E5420

A Ranking

Rank Machine Time Total Interconnect 1D Chip Theoretical
Name (s) Cores FFT Bandwidth Peak

Library Gb/s TFLOP/s
1 Hornet 0.319 94,656 Cray FFTW 3 68 3,784

Aries
2 Juqueen 0.350 458,752 IBM 5D ESSL 42.6 5,872

torus
3 Stampede 0.581 462,462 FDR Intel MKL 51.2 2,210

infiniband
4 Shaheen 1.66 65,536 IBM 3D ESSL 13.6 222.8

torus
5 K computer 2.346 663,552 Fujistu FFTW 3 64 10,620

Tofu
6 MareNostrum 4.00 48,384 FDR10 Intel MKL 51.2 1,017

III infiniband
7 Hector 7.66 90,112 Cray ACML 85 829.0

Gemini
8 VSC2 9.03 21,024 QDR FFTW 3 42.8 185.0

infiniband
9 Beacon 9.13 768 FDR Intel MKL 51.2 16.0

infiniband
10 Monte Rosa 11.9 47,872 Cray ACML 85 402.1

Gemini
11 Titan 17.0 299,008 Cray ACML 85 2,631

Gemini
12 Vedur 18.6 2,560 QDR FFTW 3 85 236

infiniband
13 Aquila 22.4 800 DDR FFTW 3 12.8 8.96

infiniband
14 Neser 118.7 1,024 Gigabit FFTW 3 10.7 10.2

ethernet

Outlook

For numerical solution of partial differential equations, want
to find solution accuracy and time to solution as a function
of computational cost or computational energy
For computer scientist, algorithm efficiency is easier to
measure
Some effort needs to be made to relate solution accuracy
and time to solution in addition to computational efficiency
For large simulations, visualization and I-O are also
bottlenecks
For FFT overlapping computation and communication,
both within FFT and the overall computation may enable
better time to solution
Spectral element method would better fit current
architectures, however increased code complexity a
limiting factor. Accuracy also a limiting factor – more
floating point computations typically implies more floating
point errors.

Acknowledgements
The authors thankfully acknowledge the computer resources, technical expertise and assistance provided by:

RIKEN

The Beacon Project at the University of Tennessee;

The UK’s national high-performance computing service;

The Barcelona Supercomputing Center - Centro Nacional de Supercomputación;

The Swiss National Supercomputing Centre (CSCS);

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin;

The KAUST Supercomputer Laboratory at King Abdullah University of Science and Technology (KAUST);

The Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory;

The Aquila HPC service at the University of Bath;

The Vienna Scientific Cluster (VSC);

The PRACE research infrastructure resources in Germany at HLRS and FZ Jülich;

The High Performance Computing Center of the University of Tartu;

Kraken at the National Institute for Computational Science;

Trestles at the San Diego Supercomputing Center;

the University of Michigan High Performance Computing Service FLUX;

Mira at the Argonne Leadership Computing Facility at Argonne National Laboratory;

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and

do not necessarily reflect the views of the funding bodies or the service providers.

Acknowledgements and References

S. Aseeri, S. Andersson, A. Bauer, B. Cloutier, D. DeMarle, C. Doering,
H. Johnston, D. Ketcheson, D. Keyes, R. Krasny, M. Parsani, D.
Pekurovsky, M. Pippig, P. Rigge, M. Srinivasan, D. Takahashi, E.
Vainikko, J. Whitehead, M. Winkel, B. Wylie, H. Yi and R. Yokota

S. Aseeri, O. Batras̆ev, M. Icardi, B.Leu, A. Liu, N. Li, B.K. Muite, E.
Müller, B. Palen, M. Quell, H. Servat, P. Sheth, R. Speck, M. Van Moer,
J. Vienne, ”Solving the Klein-Gordon equation using Fourier spectral
methods: A benchmark test for computer performance”
arXiv:1501.04552 also in 23rd High Performance Computing
Symposium (HPC 2015) held in Conjunction with 2015 Spring
Simulation Multi-Conference, April 2015.

Beamer https://en.wikipedia.org/wiki/Beamer_(LaTeX)

arXiv:1501.04552
https://en.wikipedia.org/wiki/Beamer_(LaTeX)

References

A.-K. Kassam, “Solving PDEs 10 times faster”
http://eprints.maths.ox.ac.uk/1192/1/NA-03-16.pdf

B. Cloutier, B.K. Muite and M. Parsani, “Case 3.5: Fourier
Psuedo-Spectral Method.” Second International Workshop on
High-Order CFD Methods, Germany, May 2013

P. Rigge and B.K. Muite, “Precision effects on Numerical Solutions to
the Sine-Gordon equation” http://www-personal.umich.edu/
%7Eriggep/media/files/sg_talk12.pdf

M.T. Warnez and B.K. Muite “Reduced temporal convergence rates in
high-order splitting schemes”
https://arxiv.org/pdf/1310.3901.pdf

http://eprints.maths.ox.ac.uk/1192/1/NA-03-16.pdf
http://www-personal.umich.edu/%7Eriggep/media/files/sg_talk12.pdf
http://www-personal.umich.edu/%7Eriggep/media/files/sg_talk12.pdf
https://arxiv.org/pdf/1310.3901.pdf

