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“Fourier” the Scientist
Mathematical Physicist.

Father of Mathematical Transforms

His major work, “The Analytic 
Theory of Heat”, changed the way 
scientists think about functions and 
successfully stated the equations 
governing the heat transfer in solids.

In 1807, he invented a technique to 
solve this equation: Fourier 
Transform.

He applied this technique to explain 
many heat transfer problems.

Prior to Fourier’s work, no solution to 
the heat equation was known in the 
general case.

Fourier series is a way to represent any 
periodic function as an infinite sum of 
sines and cosines.



Power Series
We use power series to approximate complicated functions.

A power series is a series whose terms are functions of x. 

This series usually arises as the Taylor series of some known function.

These are called power series, because the terms are multiples of power x. Examples;

Other power series to consider:

Fourier series whose terms 
involve sines and cosines. 
Also, Legendre, Bessel, etc…  

Legendre and Bessel in 
which the terms may be 
polynomials of the 
functions.



Fourier Series
Problems involving vibrations or oscillations occur frequently in 
physics and engineering.

Examples like vibrating tuning fork, a pendulum and water waves.

Other examples as the heat conduction, electric and magnetic fields 
and light does not appear to have anything oscillatory but turns 
out to involve the sines and cosines which are used in describing 
both simple harmonic motion and wave motion.

In many problems, series called Fourier series, whose terms are 
sines and cosines, are more useful than power series.



Fourier Series
A Periodic function is a function that 
repeats its values in regular intervals or 
periods.

Fourier series for a periodic function f(x) of 
period 2Π

Coefficients



Fourier Series
Example: Expand in a Fourier series the 
sketched function f(x)

Note f(x) is a function of period 2Π. In this 
problem, instead of a sketch, you might have 
been given



Fourier Series
To find an we use;

Thus a0 =1, and all other an =0.

To find bn we use

Putting these values for the coefficients into Fourier Series 
formula, we get



Fourier Series
Dirichlet Conditions:

Complex Form of Fourier Series:



Integral Transforms

ls a function of p. Starting with a function of t, we have multiplied it by a function of p
and t. The function F(p) is called an integral transform of f(t).

Integral transforms are used in a variety of applications, for example, in solving ODE 
or PDE.

There are many different kinds of integral transforms with different names, 
depending on what function of p and t we multiply by and what the range of 
integration is (the above example is called a Mellin transform).

Laplace and Fourier transforms are the most widely used of all integral transforms.

Laplace is considered a generalised Fourier transform.



Fourier Transforms
This came as an answer to the question: is it possible to represent a function 
which is not periodic by something analogous to Fourier series?

If you recall that an integral is a sum, it may not surprise you to learn that the 
Fourier series that is a sum of terms is replaced by a Fourier integral to cover 
non periodic cases.

If we go back to the complex Fourier series formulas:

and use substitutions to consider the case of a continuous range of frequencies. We 
get the corresponding following formulas for the Fourier transforms;



Fourier Transforms
To represent odd functions, we use the 
Fourier sine transforms;

To represent even functions, we use the 
Fourier cosine transforms;



Fourier Transforms
Separation of variable (also known as 
the Fourier method) is a technique for 
solving PDE equations, in which algebra 
allows one to rewrite an equation so 
that each two variables occurs on a 
different side of the equation.

If   ut = uxx ,suppose  U= X(x) T(t)

Solving each side separately with using 
linearity gives the solution;

U = 



Fourier Transforms
Example: (Heat Equation)

Using the product U= X T and λ2as a separation constant leads to

Solution:

Substituting t=0 gives the half-range expression of Fourier series. Therefore,



Fourier Transforms
In such problems we use separation of variables method (Fourier method) to solve the problem.

When the # of derivatives is more than the given boundary conditions it is not possible to use 
the separation of variable methods. In this case Fourier and Laplace transforms are the way to 
go.

When the domain is from -∞ -> ∞ we think of using the Fourier transform to solve the problem.

If we have the following problem;

and then define the complex Fourier as 

then the substitution in the problem equation will lead to the following solution;



Fast Fourier Transform 
(FFT)

In many application context the Fourier transform is 
approximated with a Discrete Fourier Transform (DFT).

Back to the general solution of the first heat equation 
solved with Fourier method;  

The Fast Fourier Transform allows one to find good 
approximations of the coefficients  αn, βn when the solution 
is found at a finite number of equally spaced grid points.

U = 



The Fast Fourier Transform 
(FFT) Algorithm

Numerically efficient method to calculate DFT.

It was originally developed by Gauss in 1805 but not recognised 
until more modern times.

In 1965 Cooley+ Tukey published a paper on the Fast Fourier 
Transform and the efficient way to do it and of course the time 
was right because the use of computer was growing and there 
was a need for faster and faster data analysis.



N 1000 106 109

N2 106 1012 1018

N log2N 104 20*106 30*109

The Fast Fourier Transform 
(FFT) Algorithm

Why do we need FFT if we have DFT? The 
reason is that DFT is computationally 
expensive.

The Cooley-Tukey FFT reduced the DFT 
computations from O(N2) to O(N log2N).

The difference shows when N gets large (see 
table)



Sequential Algorithm
We will begin reminding our self with the DFT

A more efficient way of calculating the DFT leads us to FFT.

What is the Trick/Idea behind the Fast Fourier Transform?

The idea is to divide the sequence X(n) into odd and even sequences.

X(2r) even sequence   X(2r+1) odd sequence 

If we put:                       , we get

entries of Fourier matrix 

for each k : N complex multiplications + N 
complex adds = N*N



Sequential Algorithm
X(k) = DFT even N/2 samples + DFT odd N/2 samples

Total operations:                                                    multiplications!

Since;                                    , therefore;

Example: N=8

Total Multiplications:

(N/2) 2 . 2 + N ≈ N2/2 + N

To Compute back:
x[0] =E[0]+        O[0]
x[1] =E[0] - O[0]



Sequential Algorithm
We started with N2 so if did the full FFT we ruffle cut things 
by a factor of 2 using this approach.

This splitting saved us some computation so why not continuing 
this process.

The method consists of organising the problem so that the 
number of data points N being used can be easily factored, 
particularly into powers of 2.

Keep splitting: each N/2 p -> 2 N/4 p

How many times? N/2, N/4, …., N/2p-1, N/2p =1



Sequential Algorithm
What is the total # of multiplications in this FFT?
If                             M(N) = N2 -> DFT 
Then                        M(N) = 2 M(N/2) + N -> FFT
Substituting M(N) over and over again to observe a closed form:

> M(N) = 2(2M(N/4) + N/2) + N
= 4M(N/4) +2N

> M(N)= 4(M(N/8) + N/4) + 2N
= 8 M(N/4) + N + 2N

=8M(N/8) + 3N
:

> M(N) = 2k M(N/2k) + k N  
For trivial DFT M(1)= 0 then, if N/2k = 1 =>  N = 2k => log2N = k

> M(N) = N  log2N



Sequential Algorithm
procedure  fft(x, X, n, w)
If n=1 then

X[0] = x[0]
else

for k=0 to (n/2)-1
p[k] = x[2k]
s[k] = x[2k+1]

end
fft(p, q, n/2 , w2)
fft(s, t, n/2 , w2)
for k = 0 to n-1

X[k] = q[k mod (n/2)] + w2t[k mod (n/2)]
end

end



Sequential Algorithm
n=8



Algoritm Mapping

A Full FFT will be done in stages.

Number of stages depends on the 
number of points N which a 
power of 2

For the case N=8= 23 the number 
of stages is 3.

This mapping of the FFT 
algorithm is called the Butterfly 
diagram.Stage= 1 2 3 4 5 6



Iterative Sequential 
Algorithm

We take the elements in pairs, 
compute the DFT of each pair, 
using one butterfly operation, 
and replace the pair with its DFT

We take these n/2 DFT’s in 
pairs and compute the DFT of 
the four vector elements                           
:

We take 2 (n/2)-element DFT’s 
and combine them using n/2 
butterfly operations into the 
final n-element DFT  

n=8



Iterative Sequential 
Algorithm

1.   procedure ITERATIVE_FFT(x, X, n)
2.   begin
3.     r := log n;
4.     for i:= 0 to n-1 do R[i] := x[i];
5.     for m:= 0 to r-1 do
6.       begin
7.         for i:= 0 to n-1 do S[i] := R[i];
8.         for i:= 0 to n-1 do
9.           begin

/* Let (b0, b1, b2, … br-1) be the binary representation of i */ 
10.             j := (b0 … bm-10bm+1 .. br-1);
11.             k := (b0 … bm-11bm+1 .. br-1);
12.             R[i] := S[j] + S[k] x w(bmbm-1..b00..0) ;
13.       endfor;
14.    endfor;
15.    for i:= 0 to n-1 do X[i] := R[i];
16.  end ITERATIVE_FFT



Other FFT Algorithms
Any algorithm that reduces operations for the DFT is called FFT. Therefore, the 
FFT is not just one algorithm and the simplest one was discovered by Cooley+ 
Tukey and it is the serial algorithm where we divide the even and odd terms to 
reduce the number of operations.

Another class of FFTs subdivides the initial data set of length N not all the way 
down to the trivial transform of length 1

There are also FFT algorithms for data sets of length N not a power of two.

MPI Parallel FFT algorithm where all butterflies in a stage can be performed in 
parallel and then at the end of the stage, the results can be gathered. (not very 
efficient and creates a lot of overheads)

2D and 3D FFT algorithms



Parallel FFT Algorithms
There are two approaches for parallelizing:

1. Binary Exchange Algorithms: Where tasks 
exchange data at each stage of the serial 
algorithm.

2. Transpose algorithms: Where data are 
transposed using  all-to-all personalised collective 
communication if the array is partitioned by 
columns each raw of data array is now stored in 
single task.



Binary Exchange FFT
Data exchange takes place between all pairs 
of processors that differ by one bit.

One element per processor is Easy.

For Multiple elements per processor we 
Assign contiguous blocks to processors and 
we get same algorithm, just exchange blocks.



Binary Exchange FFT



Binary Exchange FFT
d – number of bits for representing processes; r – number of bits 
representing the elements

The d most significant bits of element i indicate the process that 
the element belongs to.

Only the first d of the r iterations require communication

In a given iteration, m, a process i communicates with only one 
other process obtained by flipping the (m+1)th most significant 
bit of i

Total execution time - ? (n/P) long n + log P + (n/P) log P



Binary Exchange FFT
Big bandwidth requirement: Communication 
increases as n increases.

Duplicated computations: Powers of ω
cannot be pre-calculated and it is used at 
different times on different processors



The Transpose FFT
The data is arranged in a sqrt(n) x sqrt(n) 
two-dimensional square array

Rather than do an exchange transpose the 
matrix halfway through algorithm



The Transpose FFT

Notice: 

First two 
iterations are 
columnwise

Last two 
iterations are 
rowwise



The Transpose FFT
p processes arranged along columns. Each 
process owns sqrt(n/p) columns.

Each process does sqrt(n/p) FFTs of size 
sqrt(n) each.

Parallel runtime – 2(sqrt(n)/p)* 
sqrt(n)*log(sqrt(n)) + (p-1)+ n/p(b)



Which Algorithm is 
Better? 

Binary exchange – small latency, large bandwidth

2D transpose – large latency, small bandwidth

Transpose algorithm is easy to generalize to 
higher dimensions

It depends on the architecture and amount of 
data



Fourier Techniques & 
Applications

One of the major computational methods that uses FFTs is the so-called 
Spectral Methods.

Spectral Methods are just one of the many ways to represent a function 
on a computer. 

Fourier series are particularly suited for the discretization of periodic 
domain.

An efficient way to compute this is via fast Fourier transform (FFT) for 
the following reasons:

the FFT major relation;  

the speed 

the Fourier transform of the 
nth derivative.

O(N2) —> O(N log N)



Fourier Techniques & 
Applications

The idea behind Fourier is the following Fourier transform represents 
functions in frequency space versus time domain or spatial domain. 

Unlike FDM where we chop off the domain into a certain number of points 
and to evaluate the solution we depend on neighbors so everything is local if 
you want to calculate a second derivative for instance each point cares 
only about its neighbors. 

For Spectral methods everything is represented in terms of Sines & Cosines 
which are global modes and lives on the whole domain and with this you 
get big accuracy gains.

Spectral methods with Fourier bases limits you to a very small boundary 
condition set. 



Fourier Techniques & 
Applications

Spectral methods with Chebyshev basis allows a little bit more flexibility with how would 
you do with boundaries.

Accuracy & Speed makes one work hard to modify things to can still make use of these 
spectral routines. 

For non-periodic B.C. one of method to use is the Periodic Extensions for the function. 

Fourier said: I can take any function and represent it in terms of Sines and Cosines.

Gibbs phenomenon is the behavior of Fourier series for periodic functions at discontinuity 
jumps.

O(N log N)



Fourier Spectral 
Implementation

Let’s take a generic PDE                             , where L is some 
operator that has derivative terms as follows                                      
and N is the rest (non linear terms & non constant coefficients).

The Spectral technique is to fast Fourier transform everything;                             
, where

Now you are in the fast Fourier domain so you are not solving for 
time you are solving for the evolution in frequency domain.

ODE



Fourier Spectral 
Implementation

Fast Fourier Transform in 2D
Fast Poisson Solver + 
Periodic BC

Fast Fourier Transform 
in x direction.

Fast Fourier Transform 
in y direction.

Inverse the Fast Fourier 
Transform to get solution



Fourier Spectral 
Implementation

There exists various implementation of the spectral method and the most 
common approach, namely is the Galerkin approach.

There are many tools available for working with spectral methods like 
chebfun in Matlab and shenfun the Python module.

The shenfun’s purpose is to simplify the implementation of the spectral 
Gherkin method, to make is easily accessible to researchers, and to make it 
easier to solve the advanced PDEs on supercomputers. Found at 
(github.com/spectralDNS/shenfun).

The Extreme Computing Research Center (ECRC) at KAUST, in collaboration 
with the University of Oslo, Norway, has developed a new efficient 
implementation of parallel FFT that is utilized by shenfun.



FFT Facts
Operation cost: O(N log N)

BC:  Periodic 

Discretization: 2n

Accuracy: Beyond all algebraic orders



FFT Packages
The existing FFT packages uses different algorithms. 

Practically speaking in any language you will be able to find an FFT package

One of the most popular ones is written in C is called FFTW (the Fast Fourier Transform in the 
West) and most languages will just wrap over that and it is very fast and if you are going to use 
that all you need to know is that you have a function and you pass to the function your data 
and the number of bins you want to calculate and it spits out an array of the Fourier Transform 
where k the length of the array goes from zero up to the bins you chose. The output is two 
dimensions. We take the absolute value of the first half of the output array.

The output doesn’t correspond to physical numbers you have to plot it such that it is 
understandable.

Can Change number of bins based on the speed of the computer your are using.

Other available FFT packages: 2Decomp&FFT, AccFFT, P3FFT, PFFT, OpenFFT, CUFFT, FFT MKL. .



FFT Packages
Common Features 

The 2D FFT is simply the 1D FFT applied first to each row and then to each 
column of an array

Can compute:

For one or more dimensions.

For single and double precision where doubles store a much broader range of 
values, and with much more precision.

For real and complex data.

For even or odd terms i.e. the discrete Sine or Cosine Transforms.

In Parallel shared/distributed memory for parallel one- and multi-
dimensional transforms of both real and complex data.



FFT Packages



FFTW packages
FFTW adapt itself to your machines, your cache, the size of memory, the number of register, etc…

FFTW doesn’t use a fixed algorithm to calculate DFT. It choses the best algorithm for your machines.

FFTW includes serial and parallel transforms for both shared and distributed memory system.

FFTW supports both real and complex transforms as well as even/odd, i.e. the discrete cosine/sine 
transform or DCT/DST.

FFTW supports both single and double precision and it compiles the double-precision libraries by 
default.

FFTW Computation is split into two phases: Plan creation and Execution.

Two major versions of FFTW are available: FFTW2 and FFTW3. These two versions are incompatible 
and their interfaces are different. FFTW2 is now considered obsolete and has not been updated since 
1999.



FFTW3
The fftw3 is used everywhere it is used in the 
background of matlab.

The fftw3 supports Hybrid implementation MPI-
OpenMP.

www.fftw.org download from here. This library is 
also a standard component of linux so it is directly 
installed in a linux environment and you can use it and 
I’ll just guide you through how this library is being 
used.



How to Use? Install
In the webpage www.fftw.org can be found the source code of FFTW3. There it is explained 
how it can be installed but, in most Linux environments, the following works:

1. Download the source code fftw-X.X.X.tar.gz from ftp://ftp.fftw.org/pub/fftw/fftw-
X.X.X.tar.gz

2. Decompress it:

$ tar -xvvf  fftw-X.X.X.tar.gz

3. Enter the directory fftw-X.X.X:

$ cd fftw-X.X.X

4. Now, proceed to configure, compile and install the package:

$ ./configure && make && make install

If the above does not work, read carefully the documentation that is in www.fftw.org. 



How to Use? Code Example



How to Use? Explain Code
Line 1 includes the header file fftw3.h needed in order to use the package.

Line 2 contains an integer N which has the dimension of the input and output 
data of the FFT

Line 3 declares two pointers of type fftw_complex, in and out, which will 
contain the input and output of the FFT. Note that to allocate memory we use 
the function fftw_malloc instead of the sodlib.h function malloc,

Line 4 declares a variable of type fftw_plan, a plan, which will store the type 
of FFT that we want to perform.

Lines 5 and 6 allocates memory for the pointers in and out. Note that it must 
be specified that they are of type fftw_complex.



How to Use? Explain Code
Line 7 declares the type of plan which we want to perform via the function fftw_plan_dft_1d 
which has the arguments

1. int N: the dimension of the pointers in and out.

2. fftw_complex *in: the pointer that stores the input data.

3. fftw_complex *out: the pointer that stores the output data.

4. int FFTW_FORWARD is an integer constant of the package that tells the function that the FFT  
to perform must be the forward one. To perform the backward one, we will introduce 
FFTW_BACKWARD.

5. unsigned FFTW_ESTIMATE is a flag that tell to the function how well must be optimized, with 
respect to the computational time.

Line 8 performs the FFT stored in my_plan.

Lines 10, 11 and 12 deallocate the memory stored by the plan and the pointers. Note that for the 
pointers we use fftw_free and not the sodlib.h function free.



How to Use? Compile

To compile this code with gcc we just type in 
the following in the command line

$ gcc Example.c -lfftw3 -c Example.exe



How to Use? On ShaheenII
System Cray XC40 with 36 cabinets

Processor type Intel Haswell 2.3GHz, 2 CPU sockets per 
node, 16 processors cores per CPU

Total Nodes 6174 nodes 

Total Cores 197,568 cores

Memory 128 GB of memory per node, over 790 TB 
total memory

Interconnect Cray Aries with Dragonfly topology

Scheduler SLURM

Storage Lustre parallel file system with 17.4 PB 



How to Use? On ShaheenII
Three programming environments are supported on ShaheenII as in the below 
table:

Use the compiler driver wrappers cc, CC, ftn to compile and link C, C++, and 
Fortran codes respectively. 

The wrappers are the same for all the programming environments.

Refer to the ShaheenII Get Started Flyer for more information about usage. It 
can be found at 
https://www.hpc.kaust.edu.sa/sites/default/files/files/public/GetStartedFlyer.
pdf



Flyer Page I 



Flyer Page II 



How to Use? On ShaheenII
Cray’s main FFT library is FFTW from MIT with some additional optimizations for 
Cray hardware

Usage is simple

Load the module

In the code, call the FFTW plan

Cray’s FFTW provides wisdom file for these system. You can use the wisdom file to 
skip the plan stage.

In FFTW the wisdom mechanism is used for saving plans.

When calling libraries installed by Cray, such as FFTW, LIBSCI, HDF5, NetCDF you do 
not need to add –I, -L and –l flags. Instead, you will have to remove these paths from 
your Makefiles.



How to Use? On ShaheenII
$ ssh -X username@shaheen.hpc.kaust.edu.sa

$ cd /scrach/username/FFTW

wget http://www2.math.uu.se/~figueras/fftw_tutorial/examples/EXAMPLE2_transform.c

cd EXAMPLE2_transform.c Example_2

$ salloc                                    (to start an interactive session)

$ module avail -L                      (to lis all cary available libraries)

$ module avail fftw                 (to list all fftw versions)

$ module load fftw                  (to load the default version)

$ cc Example_2.c -o Example_2  (to compile on cray) 

$ cc Example_2.c -Wall -lfftw3 -lm -o Example_2 (to compile on other platforms)

$ srun Example_2                      (to run the executable)



How to Use? On ShaheenII
You can see all the used compile and link options using the wrapper 
option -craype-verbose 

$ cc -craype-verbose Example_2.c -o Example_2

The default link type is static, on the login nodes as well as on the 
compute nodes. You can specify the link type using the -dynamic or -
static compiler/linker option, e.g.:

$ cc -dynamic Example_2.c -o Example_2

OR set the environment variable, e.g.:

$ CRAYPE_LINK_TYPE=dynamic



How to Use? On ShaheenII
OpenMP is supported by all of the PrgEnvs.

The CCE (PrgEnv-cray) recognizes and interprets OpenMP directives by default. If 
you have OpenMP directives in your application but do not want to use them, 
disable OpenMP recognition with -hnoomp.

Autothreading in NOT on by default;

-hautothread to turn on

Interacts with OMP directives



FFTW / Some Useful 
Instructions

Including FFTW Lib:

For Serial Codes

C ->  #include<fftw.h>  & #include<fftwf.h> for single precision 

Fortran -> include ‘fftw3.f03’ & include ‘fftw3.ff03’

Fort Parallel Codes

C -> #include <fftw-mpi.h> & #include <fftwf-mpi.h> for single precision

Fortran -> include ‘fftw3-mpi.f03’ & include ‘fftw3f-mpi.f03’   //  // //

MPI Initialization: 

C -> void fftw_mpi_init(void)

Fortran -> fftw_mpi_init()



Create Arrays
C:

* Fixed size array:
ff_complex data=[n0][n1][n2]

* Dynamic array
data = fftw_alloc_complex(n0*n1*n2)

* MPI dynamic arrays:
fftw_complex *data
ptrdiff_t alloc_local, local_no, local_no_start
alloc_local= fftw_mpi_local_size_3d(n0, n1, n2, MPI_COMM_WORLD, &local_n0,&local_n0_start)
data = fftw_alloc_complex(alloc_local)

FORTRAN:
* Fixed size array (simplest way):

complex(C_DOUBLE_COMPLEX), dimension(n0,n1,n2) :: data
* Dynamic array (simplest way):

complex(C_DOUBLE_COMPLEX), allocatable, dimension(:,:,:) :: data
allocate (data(n0, n1, n2)

* Dynamic array (fastest method):
complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:))
type(C_PTR) :: cdata
cdata - fftw_alloc_complex(n0*n1*n2)
call c_f_pointer(cdata, data, [n0,n1,n2])

* MPI dynamic arrays:
complex(C_DOUBLE_COMPLEX), pointer :: data(:,:,:)
type(C_PTR) :: cdata
integer(C_INTPTR_T) :: alloc_local, local_n2, local_n2_offset
alloc_local = fftw_mpi_local_size_3d(n2, n1, n0, MPI_COMM_WORLD, local_n2, local_n2_offset)
cdata = fftw_alloc_complex(alloc_local)
call c_f_pointer(cdata, data, [n0,n1,local_n2])



Plan Creation (C2C)
1D Complex to complex DFT:
* C :
fftw_plan = fftw_plan_dft_1d(int nx, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

* FORTRAN :
plan = fftw_plan_dft_1d(nz, in, out, dir, flags)

2D Complex to complex DFT:
* C :
fftw_plan = fftw_plan_dft_2d(int nx, int ny, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)
fftw_plan = fftw_mpi_plan_dft_2d(int nx, int ny, fftw_complex *in, fftw_ complex *out, MPI_COMM_WORLD, 
fftw_direction dir, int flags)

* FORTRAN :
plan = ftw_plan_dft_2d(ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_2d(ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

3D Complex to complex DFT:
* C :
fftw_plan = fftw_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)
fftw_plan = fftw_mpi_plan_dft_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, MPI_COMM_WORLD, 
fftw_direction dir, int flags)
* FORTRAN :
plan = ftw_plan_dft_3d(nz, ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

FFTW_FORWARD
FFTW_BACKWARD

FFTW_FORWARD
FFTW_BACKWARD



Plan Creation (R2C)
1D Real to complex DFT:
* C :
fftw_plan = fftw_plan_dft_r2c_1d(int nx, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)

* FORTRAN :
plan = fftw_plan_dft_r2c_1d(nz, in, out, dir, flags)

2D Real to complex DFT:
* C :
fftw_plan = fftw_plan_dft_r2c_2d(int nx, int ny, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned flags)
fftw_plan = fftw_mpi_plan_dft_r2c_2d(int nx, int ny, fftw_complex *in, fftw_ complex *out, MPI_COMM_WORLD, 
fftw_direction dir, int flags)

* FORTRAN :
plan = ftw_plan_dft_r2c_2d(ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_r2c_2d(ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

3D Real to complex DFT:
* C :
fftw_plan = fftw_plan_dft_r2c_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, fftw_direction dir, unsigned 
flags)
fftw_plan = fftw_mpi_plan_dft_r2c_3d(int nx, int ny, int nz, fftw_complex *in, fftw_complex *out, MPI_COMM_WORLD, 
fftw_direction dir, int flags)
* FORTRAN :
plan = ftw_plan_dft_r2c_3d(nz, ny, nx, in, out, dir, flags)
plan = ftw_mpi_plan_dft_r2c_3d(nz, ny, nx, in, out, MPI_COMM_WORLD, dir, flags)

FFTW_FORWARD
FFTW_BACKWARD

FFTW_FORWARD
FFTW_BACKWARD



Plan Execution
Complext to complext DFT:
* C :
void fftw_execut_dft(fftw_plan plan, fftw_complex *in, fftw_complext *out)
void fftw_mpi_execute_dft(fftw_plan plan, fftw_complext *in, fftw_complex *out)

* FORTRAN :
fftw_execute_dft(plan, in, out)
fftw_mpi_execute_dft(plan, in, out)

Real to complext DFT:
* C :
void fftw_execut_dft(fftw_plan plan, double *in, fftw_complext *out)
void fftw_mpi_execute_dft(fftw_plan plan, double *in, fftw_complex *out)

* FORTRAN :
fftw_execute_dft(plan, in, out)
fftw_mpi_execute_dft(plan, in, out)



Finalizing FFTW
Destroying PLAN :
* C :
void fftw_destroy_plan(fftw_plan plan)
* FORTRAN :
fftw_destroy_plan(plan)

FFTW MPI cleanup :
* C :
void fftw_mpi_cleanup( )
* FORTRAN :
fftw_mpi_cleanup ( )

Deallocate data :
* C :
void fftw_free(fftw_complex data)
* FORTRAN :
fftw_free(data)
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