
�+01&121"�,#��" %�+& 0E
��1"/&�)0��+!��&3&)��+$&+""/&+$

FLUPS: a versatile and performant FFT-based library of
unbounded Poisson solvers

P. Balty, D.-G. Caprace, P. Chatelain, T. Gillis

SIAM - CSE 2023

2

Context

- 3D incompressible Navier-Stokes equations on a Cartesian grid:

‣ Resolution of the Poisson equation to impose the incompressibility or recover the stream functions:

‣ Usually, 50% of the total computational cost

∇2ψ = − ω

Torque 2020: Multiphysics simulations of the dynamic and
wakes of a floating vertical axis wind turbine, Balty et al.

2

Context

- 3D incompressible Navier-Stokes equations on a Cartesian grid:

‣ Resolution of the Poisson equation to impose the incompressibility or recover the stream functions:

‣ Usually, 50% of the total computational cost

∇2ψ = − ω

- Specific need:

Periodic Symmetric Unbounded Semi-unbounded

- FFT-based method is compatible with most of the BCs and are the fastest on uniform rectangular grid [1].

[1] Gholami:2016

‣ Flexibility in the data layout: cell-centered or node-centered

‣ Performance on massively parallel systems

‣ Various boundary conditions (BC):

3

Plan for today

I. Context

II. Methodology

III. Implementation for massively distributed systems

IV. Results

V. Conclusion

• FFT-based method:

- 3D FFT obtained as a succession of 1D FFTs:
- Analytical expression of the Green’s functions (provided some regularisation of a given order)
- Different transforms for each boundary condition and data layout

ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz

4

An unbounded FFT-based Poisson Solver…

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

• FFT-based method:

- 3D FFT obtained as a succession of 1D FFTs:
- Analytical expression of the Green’s functions (provided some regularisation of a given order)
- Different transforms for each boundary condition and data layout

ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz

4

An unbounded FFT-based Poisson Solver…

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

Periodic or symmetric boundary condition

Periodic

Symmetric

∇2Ψ = − f ⇔ ψ = G ⋆ f ⇔ ψ̂ = Ĝ ̂f
where is the Green’s function in a spectral domainĜ = − 1/k2

 1D Discrete Fourier transform (real to complex or complex to complex)→

 1D Discrete cosine/sine transform depending on the symmetry→

f(x) → f̃(k)

f(x) → f̃(k)

Unbounded and semi-unbounded boundary condition

• FFT-based method:

- 3D FFT obtained as a succession of 1D FFTs: ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz

5

… with various boundary conditions

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

∇2Ψ = − f ⇔ ψ = Gδ ⋆ f ⇔ ψ̂ = Ĝδ
̂f where is the regularized Green’s functionĜδ

f(x) → f̃(k)

Unbounded

 Domain doubling technique[2,3]: →

- is extended to a domain of 2N with 0 padding
- Discrete Fourier transform on the padded function

f

L0 2L

[2] Hockney:1988

[3] Caprace : 2021

Unbounded and semi-unbounded boundary condition

• FFT-based method:

- 3D FFT obtained as a succession of 1D FFTs: ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz

5

… with various boundary conditions

ψ = G ⋆ f∇2Ψ = − f ψ̂ = Ĝ ̂f

∇2Ψ = − f ⇔ ψ = Gδ ⋆ f ⇔ ψ̂ = Ĝδ
̂f where is the regularized Green’s functionĜδ

f(x) → f̃(k)

Unbounded

 Domain doubling technique[2,3]: →

- is extended to a domain of 2N with 0 padding
- Discrete Fourier transform on the padded function

f

L0 2L

f(x) → f̃(k)

Very convenient for various problems:
-Inflow - outflow
- Wall bounded (wake in ground effects)

Semi-unbounded

Symmetric boundary conditions

0 L 2L

- is extended to a domain of 2N with 0 padding
- Discrete sine/cosine transform on the padded function

DST/DCT is equivalent to impose symmetric
boundary conditions on the new domain

f

→

[2] Hockney:1988

[3] Caprace : 2021

• An all-to-all communication problem - 3 implementations:
- All-to-all communication
- Non-blocking communication with manual packing and un packing
- Non-blocking communication with MPI_Datatypes

• Optimizations:
- Order of the 1D FFTs determined to reduce the memory footprint and the computational cost
- Creation of sub-communicators to reduce the memory footprint on large partition

6

3D FFT on massively parallel systems

X
Y

Z

X

Y

X

Y

X
Y

Z Communication

Shuffle

Copy back

copy to buffer

12

34

24 13

68 57

Source topology

Destination topology

Distributed 1D FFTs require:

- All data on the same processor must be
aligned in the direction of the FFT

- Unit-stride in memory

• The topology switches:
• Pencil decomposition

7

Switching between pencils - 3 implementations

All-to-all Non-blocking with manual packing Non-blocking with MPI_Datatype

- Simpler implementation using
MPI_Ialltoallv

- Implicit barrier

- Transposition of the data (based
on FFTW)

- Use persistent MPI_Send_Init,
MPI_Recv_Init and MPI_Testsome

- Overlap the data packing and the
transposition with the
communication

- Transposition of the data based on
FFTW

- Use non-blocking Send/Recv
request

- Avoid manual packing by using
MPI_Datatype

- Overlap the data packing and the
transposition with the
communication

- Transposition of the data based on
FFTW

- 3D FFT obtained as a succession of 1D FFTs: ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz

8

1D FFTs reordering

Example 1 - (Periodic, Unbounded, Periodic)

Three 1D FFTs have to be performed:

Y
Z

X

X
Y

Z

Without rendering of the transform :
1) A real-to-complex DFT
2) A complex-to-complex DFT on an extended and padded domain
3) A complex-to-complex DFT (on an extended domain)

X → Y → Z
ψx,y,z → ψ̃kx,y,z
ψ̃kx,y,z → ψ̃kx,ky,z
ψ̃kx,ky,z → ψ̂kx,ky,kz

 FFT in costs → Z 2N3log(N)

- 3D FFT obtained as a succession of 1D FFTs: ψx,y,z → ψ̃x,ky,z → ψ̃x,ky,kz → ψ̂kx,ky,kz

9

1D FFTs reordering

Example 1 - (Periodic, Unbounded, Periodic)

Three 1D FFTs have to be performed:

Y
Z

X

X
Y

Z

With rendering of the transform :
1) A real-to-complex DFT
2) A complex-to-complex DFT
3) A complex-to-complex DFT on an extended domain

X → Z → Y
ψx,y,z → ψ̃kx,y,z
ψ̃kx,y,z → ψ̃kx,y,kz

ψ̃kx,y,kz
→ ψ̂kx,ky,kz

 FFT in costs → Z N3log(N)

10

Applications - Biot-Savart solver: Electromagnetism, Fluid mechanics,…

∇2u = − ∇ × ωMethodology
I. Forward transform of the rhs:

II. Computation of the curl in the spectral space

III. Multiplication with the spectral Green’s function

ω → ω̂

Ĝ

1
2πr

1 − 1
E2(1) (1 − (r

R
2)) E2

1
1 − (r

R
2)with uθ(r) =

1
2πr

{
If r < = R

otherwise

- Corresponding analytical velocity:

u(x, y, z) = {−sin(θ)uθ(r), cos(θ)uθ(r), 0}

Testcase
- Compact vortex tube: ω(x, y, z) = {0,0, − ωz(r)}

1
2π

2
R2

1
E2(1) exp − 1

(1 − (r
R

2))with ωz(r) =
0{

If r < = R

otherwise

- Cubic domain of size

- and : fully unbounded

- : periodic

[0,L]3

X Y
Z

E∞ = sup
x,y,z

{ |u(x, y, z) − uref(x, y, z) |}

Infinite norm of the error

11

Results: Comparison with accFFT[4]

Comparison with accFFT, one of the fastest distributed FFT libraries on CPU[5]

Testcase
- Weak scaling

- Fully periodic

- Rectangular domain

- unknowns per rank: 2563

accFFT

- Pencils are aligned in the direction

- Does
- Opt. Flag: ACCFFT_MEASURE

Z
Z → Y → X

Flups

- Pencils are aligned in the direction

- Does
- Opt. Flag: FFTW_MEASURE

X
X → Y → Z

 → At 128 nodes, non-blocking version of flups is 27% faster than accFFT

Px Py Pz
1 1 8 16
2 1 16 16
8 1 32 32

32 1 64 64
128 1 128 128

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

[4] Gholami:2015

[5]Ayala:2021a

Time-to-solution

Nodes Px Py Pz
1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Process distribution

12

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Test case:
- Poisson equation in a fully unbounded domain

- unknowns per rank
- From 1 to 384 nodes

963

Time-to-solution

Nodes Px Py Pz
1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Process distribution

12

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Fixed computational cost: ffts,
mult, copy of the rhs

Test case:
- Poisson equation in a fully unbounded domain

- unknowns per rank
- From 1 to 384 nodes

963

Time-to-solution

Nodes Px Py Pz
1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Process distribution

12

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Fixed computational cost: ffts,
mult, copy of the rhs Unbounded domain:

cost of the topology switch increases

Test case:
- Poisson equation in a fully unbounded domain

- unknowns per rank
- From 1 to 384 nodes

963

Time-to-solution

Nodes Px Py Pz
1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Process distribution

12

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Fixed computational cost: ffts,
mult, copy of the rhs Unbounded domain:

cost of the topology switch increases

Manual packing hidden

in the communication

Test case:
- Poisson equation in a fully unbounded domain

- unknowns per rank
- From 1 to 384 nodes

963

Time-to-solution

Nodes Px Py Pz
1 4 4 8
2 4 8 8
4 8 8 8
8 8 8 16

16 8 16 16
32 16 16 16
64 16 16 32

128 16 32 32
256 32 32 32
384 32 32 48

Process distribution

12

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

Weak scaling - from 128 to 49,152 processes

Fixed computational cost: ffts,
mult, copy of the rhs

Time-to-solution:

MPI_Datatype all to all Non-Blocking> >

Time-to-solution: all-to-all Non-Blocking MPI_Datatype> >

Unbounded domain:

cost of the topology switch increases

Manual packing hidden

in the communication

Test case:
- Poisson equation in a fully unbounded domain

- unknowns per rank
- From 1 to 384 nodes

963

Weak efficiency

13

Weak scaling - from 128 to 49,152 processes

Gustafson’s law:

efficiency is

where:

- is the ratio of the
computational resource

- is the sequential percentage
of the program

η

ηP,w = 1
1 + (r − 1)β

r = N/N0

β

β = 0 %

β = 0.2 %

β = 0.5 %

β = 1 %

Weak efficiency

13

Weak scaling - from 128 to 49,152 processes

Gustafson’s law:

efficiency is

where:

- is the ratio of the
computational resource

- is the sequential percentage
of the program

η

ηP,w = 1
1 + (r − 1)β

r = N/N0

β

(Resources) x 384
(Problem size) x 384

(Time-to-solution) x 1.55

(Time-to-solution) x 2.8

β = 0 %

β = 0.2 %

β = 0.5 %

β = 1 %

14

Strong scaling - from 128 to 49,152 processes

MeluXina:
- CPU: AMD EPYC 7H12
- Interconnect: 200 Gb/s Infiniband HDR
- MPI: MPICH 4.1a1
- Transport Layer: UCX 1.13.1

Test case:
- Poisson equation in a fully unbounded domain

- unknowns
- From 1 to 384 nodes

12813

Time-to-solution Speed up
(Resources) x 384
(Problem size) x 1

Sp = 260

Sp = 190

Sp = 148

15

European cluster comparison - Weak scaling test

Time-to-solution Weak efficiency

Test case:
- Poisson equation in a fully unbounded domain

- unknowns per rank
- From 1 to 128 nodes

963

Name Location CPU Interconnect Transport Layer OSU Latency

Lumi Finland AMD EPYC 7763 200 Gb/s Slingshot-11 Libfabric 15.0.0 2.05 us
MeluXina Luxembourg AMD EPYC 7H12 200 Gb/s Infiniband HDR ucx 1.13.1 1.45 us

Vega Slovenia AMD EPYC 7H12 100 Gb/s Infiniband HDR ucx 1.13.1 1.99 us

16

Conclusions

Flups offers highly efficient distributed FFT-based Poisson solvers

Methodology
- Handle arbitrary cartesian topology
- 1000 combinations of boundary conditions
- 8 different Green’s function
- 2 data layouts

Parallel performance
- Faster time-to-solution compared to accFFT on large FFTs

- Weak and Strong scalability with a parallel percentage
- Scalability on three EuroCC systems

≈ 96% − 98 %

Thanks for your attention!

Any questions?

-FLUPS - a flexible and performant massively parallel Fourier transform library, Balty
et al., IEEE - Transactions on Parallel and Distributed Systems, 2023 (forthcoming)

-FLUPS - A Fourier-based Library of Unbounded Poisson Solvers, Caprace et al., SIAM
Journal on Scientific Computing, vol. 43, no. 1, pp. C31–C60, January 2021

-https://github.com/vortexlab-uclouvain/flups

https://github.com/vortexlab-uclouvain/flups

