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Background

The fast Fourier transform (FFT) is widely used in
science and engineering.

Parallel FFTs on distributed-memory parallel
computers require intensive all-to-all
communication, which affects their performance.

How to overlap the computation and the all-to-all

communication is an issue that needs to be
addressed for parallel FFTs.

Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.
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Objectives

Several FFT libraries with automatic tuning have
been proposed.

— FFTW, SPIRAL, and UHFFT

An Implementation of parallel 1-D FFT on cluster of

ntel Xeon Phi coprocessors has been presented
Park et al. 2013].

However, to the best of our knowledge, parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors has not yet been reported.

We propose an implementation of a parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors.
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Approach

 The parallel 1-D FFT implemented is based on the
six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

» Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap.
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Six-Step FFT Algorithm [Bailey90]

« Step 1: Transpose

» Step 2: Perform 7241 individual 742 -point
multicolumn FFTs

« Step 3: Perform twiddle factor (wdndl nd2 T
T £l2 )
multiplication

« Step 4: Transpose

» Step 5: Perform 7242 individual 741 -point
multicolumn FFTs

» Step 6: Transpose
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Parallel 1-D FFT Algorithm Based on
Six-Step FFT
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In-Cache FFT Algorithm and

Vectorization

* Forin-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

 Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
Processor.

 Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.
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Optimization of Parallel 1-D FFT on
Knights Landing Processor

COMPLEX*16 X(N1,N2),Y(N2,N1)
ISOMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
DO 11=1,N1,NB
DO JJ=1,N2,NB
DO I=I1,MIN(II+NB-1,N1)
DO J=JJ,MIN(JJ+NB-1,N2)

Y(J,H)=X(1,J)
END DO
END DO To expand the outermost loop,
EN%N[[))ODO the double-nested loop can be
SOMP PARALLEL DO collapsed into a single-nested loop.
DO I=1,N1

CALL IN_CACHE_FFT(Y(1,1),N2)
END DO
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Computation-Communication
Overlap [I[domura et al. 2014]

ISOMP PARALLEL
ISOMP MASTER

MPIl communication

— MPI| communication is performed

on the master thread

'SOMP END MASTER —— No barrier synchronization
ISOMP DO SCHEDULE(DYNAMIC)

DO I=1,N
Computation — Computation is performed
END DO by a thread other than the

somp po < Implicit barrier . aster thread
DO I=1,N synchronization

Computation using the <— Computation is performed

result of communication after completion of the

END DO MPIl communication
1ISOMP END PARALLEL
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Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)
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Automatic Tuning of Parallel 1-D FFT

* The automatic tuning process consists of
two steps:

— Automatic tuning of all-to-all communication

— Selection of the number of divisions NDIV for the
computation-communication overlap
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Optimizing of All-to-All
Communication

* An optimized all-to-all collective algorithm for
multi-core systems connected using modern
InfiniBand network interfaces [Kumar et al.

08].

* The all-to-all algorithm completes in two
steps, intra-node exchange and inter-node
exchange.
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Two-Phase All-to-All Algorithm

* We extend the all-to-all algorithm to the general
case of P=Plx X Ply MPI processes.

1. Local array transpose from
(NV/PT2, Plx, Ply)to (N/PT2, Ply,
Plx),
where /Vis the total number of elements.

Then Ply simultaneous all-to-all communications
across Alx MPI processes are performed.

2. Local array transpose from
(NV/PT2, Ply, Plx)to (N/PT2, Plx,
Ply).
2013'19@n Plx simultanequs.all-to-all communications



Automatic Tuning of All-to-All

Communication

The two-phase all-to-all algorithm requires twice the
total amount of communications compared with the
ring algorithm.

However, for small to medium messages, the two-

phase all-to-all algorithm is better than the ring
algorithm due to the smaller startup time.

Automatic tuning of all-to-all communication can be
accomplished by performing a search over the

parameters of all of 2dx and Ply.

If P=Plx XPly is a power of two, the size of
search space is logJ2 7.
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Selection of Number of Divisions for
Computation-Communication Overlap

When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.
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Performance Results

« To evaluate the parallel 1-D FFT with automatic tuning (AT), we
compared its performance with that of the FFTW 3.3.8, the FFTE
6.2alpha (http://www.ffte.jp/) and the FFTE 6.2alpha with AT.

« The performance was measured on the Oakforest-PACS (8208
nodes) at Joint Center for Advanced HPC (JCAHPC) and Cori
(9688 nodes) at NERSC.

— CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)

— Interconnect: Intel Omni-Path Architecture (OFP),
Cray Aries with Dragonfly topology (Cori)

— Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE)
Intel C compiler 18.0.1.163 (for FFTW)

— Compiler option: “-O3 -xMIC-AVX512 -qopenmp”
— MPI library: Intel MPI 2018.1.163

— cache/quadrant (The amount of memory used at each node is less than
2 GB)

— Each MPI process has 64 cores and 64 threads.
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Results of automatic tuning of parallel 1-C
FFTs (Oakforest-PACS, 1024 nodes)

FFTE 6.2alpha FFTE 6.2alpha with AT

N Z INDIV| GFlops | #% | £ |NDIV| GFlops
16M (1024 | 4 2.7 32 | 32 1 53.1
64M |1024| 4 13.8 8 | 128 1 148.1

256M [ 1024 | 4 75.6 16 | 64 1 416.9

1G (1024 4 359.6 32 | 32 1 1241.4
4G [1024| 4 479.3 8 | 128 1 1509.6
16G [1024| 4 839.9 1024 | 1 1 2749.3
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Performance of parallel 1-D FFTs
(Oakforest-PACS, 1024 nodes)
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Performance of parallel 1-D FFTs
(Cori, 1024 nodes)
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Performance of parallel 1-D FFTs
(Oakforest-PACS vs Cori, 1024 nodes)
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Performance of all-to-all communication
(Oakforest-PACS vs Cori, 1024 nodes)
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Conclusion

We proposed an implementation of parallel 1-D FFT
with automatic tuning on cluster of Intel Xeon Phi
processors.

We used a computation-communication overlap

method that introduces a communication thread with
OpenMP.

An automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap, was
Implemented.

The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on cluster of Intel Xeon Phi processors.
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