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Background 
•  The fast Fourier transform (FFT) is widely used in 

science and engineering. 
•  Parallel FFTs on distributed-memory parallel 

computers require intensive all-to-all 
communication, which affects their performance. 

•  How to overlap the computation and the all-to-all 
communication is an issue that needs to be 
addressed for parallel FFTs. 

•  Moreover, we need to select the optimal 
parameters according to the computational 
environment and the problem size. 
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Objectives 
•  Several FFT libraries with automatic tuning have 

been proposed. 
–  FFTW, SPIRAL, and UHFFT 

•  An Implementation of parallel 1-D FFT on cluster of 
Intel Xeon Phi coprocessors has been presented 
[Park et al. 2013]. 

•  However, to the best of our knowledge, parallel 1-D 
FFT with automatic tuning on cluster of Intel Xeon 
Phi processors has not yet been reported. 

•  We propose an implementation of a parallel 1-D 
FFT with automatic tuning on cluster of Intel Xeon 
Phi processors. 
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Approach	

•  The parallel 1-D FFT implemented is based on the 
six-step FFT algorithm [Bailey 90], which requires 
two multicolumn FFTs and three data 
transpositions. 

•  Using this method, we have implemented an 
automatic tuning facility for selecting the optimal 
parameters of the all-to-all communication and the 
computation-communication overlap. 
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Six-Step FFT Algorithm [Bailey90] 
•  Step 1: Transpose 
•  Step 2: Perform 𝑛↓1  individual 𝑛↓2 -point  

            multicolumn FFTs 
•  Step 3: Perform twiddle factor (𝜔↓𝑛↓1 𝑛↓2 ↑
𝑗↓1 𝑘↓2  )    
             multiplication 

•  Step 4: Transpose 
•  Step 5: Perform 𝑛↓2  individual 𝑛↓1 -point  

            multicolumn FFTs 
•  Step 6: Transpose 
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Parallel 1-D FFT Algorithm Based on 
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In-Cache FFT Algorithm and 
Vectorization	

•  For in-cache FFT, we used radix-2, 3, 4, 5, 8, 9, 
and 16 FFT algorithms based on the mixed-radix 
FFT algorithms [Temperton 83]. 

•  Automatic vectorization was used to access the 
Intel AVX-512 instructions on the Knights Landing 
processor. 

•  Although higher radix FFTs require more floating-
point registers to hold intermediate results, the 
Knights Landing processor has 32 ZMM 512-bit 
registers. 
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       COMPLEX*16 X(N1,N2),Y(N2,N1) 
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ) 
      DO II=1,N1,NB 
          DO JJ=1,N2,NB 
              DO I=II,MIN(II+NB-1,N1) 
                  DO J=JJ,MIN(JJ+NB-1,N2) 
                      Y(J,I)=X(I,J) 
                  END DO 
              END DO 
          END DO 
      END DO 
!$OMP PARALLEL DO 
      DO I=1,N1 
          CALL IN_CACHE_FFT(Y(1,I),N2) 
      END DO 
      … 

To expand the outermost loop, 
the double-nested loop can be 
collapsed into a single-nested loop.	
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Optimization of Parallel 1-D FFT on 
Knights Landing Processor	
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Computation-Communication 
Overlap [Idomura et al. 2014]	

 
!$OMP PARALLEL 
!$OMP MASTER 
 
 
!$OMP END MASTER 
!$OMP DO SCHEDULE(DYNAMIC) 
       DO I=1,N 
 
 
       END DO 
!$OMP DO 
       DO I=1,N 
 
 
 
       END DO 
!$OMP END PARALLEL 

MPI communication	

Computation	

Computation using the 
result of communication	

← MPI communication is performed 
     on the master thread 

← Implicit barrier 
    synchronization 	

← Computation is performed 
     by a thread other than the 
     master thread	

← No barrier synchronization 	
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← Computation is performed 
     after completion of the 
     MPI communication	
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Pipelined Computation-
Communication Overlap	

Without 
overlap	

Overlap 
(NDIV=2)	

Overlap 
(NDIV=4)	
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Comp.	 Comm.	
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Automatic Tuning of Parallel 1-D FFT	

•  The automatic tuning process consists of 
two steps: 
– Automatic tuning of all-to-all communication 
– Selection of the number of divisions NDIV for the 

computation-communication overlap 
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Optimizing of All-to-All 
Communication	

•  An optimized all-to-all collective algorithm for 
multi-core systems connected using modern 
InfiniBand network interfaces [Kumar et al. 
08]. 

•  The all-to-all algorithm completes in two 
steps, intra-node exchange and inter-node 
exchange. 
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Two-Phase All-to-All Algorithm	

•  We extend the all-to-all algorithm to the general 
case of 𝑃= 𝑃↓𝑥 × 𝑃↓𝑦  MPI processes. 

1.  Local array transpose from 
           (𝑁/ 𝑃↑2 , 𝑃↓𝑥 , 𝑃↓𝑦 ) to (𝑁/ 𝑃↑2 , 𝑃↓𝑦 , 
𝑃↓𝑥 ) , 
where 𝑁 is the total number of elements. 

     Then 𝑃↓𝑦  simultaneous all-to-all communications  
     across 𝑃↓𝑥  MPI processes are performed. 
2.  Local array transpose from 
            (𝑁/ 𝑃↑2 , 𝑃↓𝑦 , 𝑃↓𝑥 ) to (𝑁/ 𝑃↑2 , 𝑃↓𝑥 , 
𝑃↓𝑦 ) . 
     Then 𝑃↓𝑥  simultaneous all-to-all communications 
     across 𝑃↓𝑦  MPI processes are performed. 
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Automatic Tuning of All-to-All 
Communication	

•  The two-phase all-to-all algorithm requires twice the 
total amount of communications compared with the 
ring algorithm. 

•  However, for small to medium messages, the two-
phase all-to-all algorithm is better than the ring 
algorithm due to the smaller startup time. 

•  Automatic tuning of all-to-all communication can be 
accomplished by performing a search over the 
parameters of all of 𝑃↓𝑥  and 𝑃↓𝑦 . 

•  If 𝑃=𝑃↓𝑥 × 𝑃↓𝑦  is a power of two, the size of 
search space is log↓2  𝑃 . 
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Selection of Number of Divisions for 
Computation-Communication Overlap	

•  When the number of divisions for computation-
communication overlap is increased, the overlap ratio 
also increases. 

•  On the other hand, the performance of all-to-all 
communication decreases due to reducing the 
message size. 

•  Thus, a tradeoff exists between the overlap ratio and 
the performance of all-to-all communication. 

•  The default overlapping parameter of the original FFTE 
6.2alpha is NDIV=4. 

•  In our implementation, the overlapping parameter 
NDIV is varied between 1, 2, 4, 8 and 16. 
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Performance Results	
•  To evaluate the parallel 1-D FFT with automatic tuning (AT), we 

compared its performance with that of the FFTW 3.3.8, the FFTE 
6.2alpha (http://www.ffte.jp/) and  the FFTE 6.2alpha with AT. 

•  The performance was measured on the Oakforest-PACS (8208 
nodes) at Joint Center for Advanced HPC (JCAHPC) and Cori 
(9688 nodes) at NERSC. 
–  CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz) 
–  Interconnect: Intel Omni-Path Architecture (OFP), 

                      Cray Aries with Dragonfly topology (Cori) 
–  Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE) 

                 Intel C compiler 18.0.1.163 (for FFTW) 
–  Compiler option: “-O3 -xMIC-AVX512 -qopenmp” 
–  MPI library: Intel MPI 2018.1.163 
–  cache/quadrant (The amount of memory used at each node is less than 

2 GB) 
–  Each MPI process has 64 cores and 64 threads. 
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Results of automatic tuning of parallel 1-D 
FFTs (Oakforest-PACS, 1024 nodes)	

N 𝑃 NDIV GFlops 𝑃↓𝑥  𝑃↓𝑦  NDIV GFlops 
16M 1024 4     2.7 32 32 1     53.1 

64M 1024 4   13.8 8 128 1   148.1 

256M 1024 4   75.6 16 64 1   416.9 

1G 1024 4 359.6 32 32 1 1241.4 

4G 1024 4 479.3 8 128 1 1509.6 

16G 1024 4 839.9 1024 1 1 2749.3 

FFTE 6.2alpha FFTE 6.2alpha with AT 
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Performance of parallel 1-D FFTs 
(Oakforest-PACS, 1024 nodes)	
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Performance of parallel 1-D FFTs 
(Cori, 1024 nodes)	
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Performance of parallel 1-D FFTs 
(Oakforest-PACS vs Cori, 1024 nodes)	
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Performance of all-to-all communication 
(Oakforest-PACS vs Cori, 1024 nodes)	
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Breakdown of execution time in 
FFTE 6.2alpha (no overlap) 

(Oakforest-PACS, N=2↑25 ×number of 
nodes)	
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Conclusion	
•  We proposed an implementation of parallel 1-D FFT 

with automatic tuning on cluster of Intel Xeon Phi 
processors. 

•  We used a computation-communication overlap 
method that introduces a communication thread with 
OpenMP. 

•  An automatic tuning facility for selecting the optimal 
parameters of the all-to-all communication and the 
computation-communication overlap, was 
implemented. 

•  The performance results demonstrate that the 
proposed implementation of a parallel 1-D FFT with 
automatic tuning is efficient for improving the 
performance on cluster of Intel Xeon Phi processors. 
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