
Automatic Tuning for Parallel FFTs
on Cluster of Intel Xeon Phi

Processors

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan

2018/12/17 Parallel Fast Fourier Transforms 1

Outline
•  Background
•  Objectives
•  Six-Step FFT Algorithm
•  In-Cache FFT Algorithm and Vectorization
•  Computation-Communication Overlap
•  Automatic Tuning of Parallel 1-D FFT
•  Performance Results
•  Conclusion

2018/12/17 2 Parallel Fast Fourier Transforms

Background
•  The fast Fourier transform (FFT) is widely used in

science and engineering.
•  Parallel FFTs on distributed-memory parallel

computers require intensive all-to-all
communication, which affects their performance.

•  How to overlap the computation and the all-to-all
communication is an issue that needs to be
addressed for parallel FFTs.

•  Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.

2018/12/17 3 Parallel Fast Fourier Transforms

Objectives
•  Several FFT libraries with automatic tuning have

been proposed.
–  FFTW, SPIRAL, and UHFFT

•  An Implementation of parallel 1-D FFT on cluster of
Intel Xeon Phi coprocessors has been presented
[Park et al. 2013].

•  However, to the best of our knowledge, parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors has not yet been reported.

•  We propose an implementation of a parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors.

2018/12/17 4 Parallel Fast Fourier Transforms

Approach	

•  The parallel 1-D FFT implemented is based on the
six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

•  Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap.

2018/12/17 5 Parallel Fast Fourier Transforms

Six-Step FFT Algorithm [Bailey90]
•  Step 1: Transpose
•  Step 2: Perform 𝑛↓1  individual 𝑛↓2 -point

 multicolumn FFTs
•  Step 3: Perform twiddle factor (𝜔↓𝑛↓1 𝑛↓2 ↑
𝑗↓1 𝑘↓2  )
 multiplication

•  Step 4: Transpose
•  Step 5: Perform 𝑛↓2  individual 𝑛↓1 -point

 multicolumn FFTs
•  Step 6: Transpose

6 2018/12/17 Parallel Fast Fourier Transforms

2018/12/17 7

Parallel 1-D FFT Algorithm Based on
Six-Step FFT	

Global
Transpose	

Global
Transpose	

Global
Transpose	

𝑁↓
1 	

𝑁↓
2 	

𝑁↓
2 	

𝑁↓
1 	

𝑁↓
1 	

𝑁↓
2 	

𝑁↓
1 	

𝑁↓
2 	

𝑃↓
0 	

𝑃↓
1 	

𝑃↓
2 	

𝑃↓
3 	

𝑃↓
0 	

𝑃↓
1 	

𝑃↓
2 	

𝑃↓
3 	

Perform
twiddle factor
(𝜔↓𝑁↓1 𝑁↓2 ↑𝐽↓1 
𝐾↓2  )
multiplication

Parallel Fast Fourier Transforms

In-Cache FFT Algorithm and
Vectorization	

•  For in-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

•  Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
processor.

•  Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.

8 2018/12/17 Parallel Fast Fourier Transforms

 COMPLEX*16 X(N1,N2),Y(N2,N1)
!$OMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
 DO II=1,N1,NB
 DO JJ=1,N2,NB
 DO I=II,MIN(II+NB-1,N1)
 DO J=JJ,MIN(JJ+NB-1,N2)
 Y(J,I)=X(I,J)
 END DO
 END DO
 END DO
 END DO
!$OMP PARALLEL DO
 DO I=1,N1
 CALL IN_CACHE_FFT(Y(1,I),N2)
 END DO
 …

To expand the outermost loop,
the double-nested loop can be
collapsed into a single-nested loop.	

9 2018/12/17

Optimization of Parallel 1-D FFT on
Knights Landing Processor	

Parallel Fast Fourier Transforms

Computation-Communication
Overlap [Idomura et al. 2014]	

!$OMP PARALLEL
!$OMP MASTER

!$OMP END MASTER
!$OMP DO SCHEDULE(DYNAMIC)
 DO I=1,N

 END DO
!$OMP DO
 DO I=1,N

 END DO
!$OMP END PARALLEL

MPI communication	

Computation	

Computation using the
result of communication	

← MPI communication is performed
 on the master thread

← Implicit barrier
 synchronization 	

← Computation is performed
 by a thread other than the
 master thread	

← No barrier synchronization 	

10 2018/12/17

← Computation is performed
 after completion of the
 MPI communication	

Parallel Fast Fourier Transforms

Pipelined Computation-
Communication Overlap	

Without
overlap	

Overlap
(NDIV=2)	

Overlap
(NDIV=4)	

Computation	 Communication	

Comp.	 Comm
.	

11 2018/12/17

Comp.	 Comm.	

Parallel Fast Fourier Transforms

Automatic Tuning of Parallel 1-D FFT	

•  The automatic tuning process consists of
two steps:
– Automatic tuning of all-to-all communication
– Selection of the number of divisions NDIV for the

computation-communication overlap

12 2018/12/17 Parallel Fast Fourier Transforms

Optimizing of All-to-All
Communication	

•  An optimized all-to-all collective algorithm for
multi-core systems connected using modern
InfiniBand network interfaces [Kumar et al.
08].

•  The all-to-all algorithm completes in two
steps, intra-node exchange and inter-node
exchange.

13 2018/12/17 Parallel Fast Fourier Transforms

Two-Phase All-to-All Algorithm	

•  We extend the all-to-all algorithm to the general
case of 𝑃= 𝑃↓𝑥 × 𝑃↓𝑦  MPI processes.

1.  Local array transpose from
 (𝑁/ 𝑃↑2 , 𝑃↓𝑥 , 𝑃↓𝑦 ) to (𝑁/ 𝑃↑2 , 𝑃↓𝑦 ,
𝑃↓𝑥 ) ,
where 𝑁 is the total number of elements.

 Then 𝑃↓𝑦  simultaneous all-to-all communications
 across 𝑃↓𝑥  MPI processes are performed.
2. Local array transpose from
 (𝑁/ 𝑃↑2 , 𝑃↓𝑦 , 𝑃↓𝑥 ) to (𝑁/ 𝑃↑2 , 𝑃↓𝑥 ,
𝑃↓𝑦 ) .
 Then 𝑃↓𝑥  simultaneous all-to-all communications
 across 𝑃↓𝑦  MPI processes are performed.

14 2018/12/17 Parallel Fast Fourier Transforms

Automatic Tuning of All-to-All
Communication	

•  The two-phase all-to-all algorithm requires twice the
total amount of communications compared with the
ring algorithm.

•  However, for small to medium messages, the two-
phase all-to-all algorithm is better than the ring
algorithm due to the smaller startup time.

•  Automatic tuning of all-to-all communication can be
accomplished by performing a search over the
parameters of all of 𝑃↓𝑥  and 𝑃↓𝑦 .

•  If 𝑃=𝑃↓𝑥 × 𝑃↓𝑦  is a power of two, the size of
search space is log↓2  𝑃 .

15 2018/12/17 Parallel Fast Fourier Transforms

Selection of Number of Divisions for
Computation-Communication Overlap	

•  When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

•  On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

•  Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

•  The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

•  In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.

16 2018/12/17 Parallel Fast Fourier Transforms

Performance Results	
•  To evaluate the parallel 1-D FFT with automatic tuning (AT), we

compared its performance with that of the FFTW 3.3.8, the FFTE
6.2alpha (http://www.ffte.jp/) and the FFTE 6.2alpha with AT.

•  The performance was measured on the Oakforest-PACS (8208
nodes) at Joint Center for Advanced HPC (JCAHPC) and Cori
(9688 nodes) at NERSC.
–  CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
–  Interconnect: Intel Omni-Path Architecture (OFP),

 Cray Aries with Dragonfly topology (Cori)
–  Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE)

 Intel C compiler 18.0.1.163 (for FFTW)
–  Compiler option: “-O3 -xMIC-AVX512 -qopenmp”
–  MPI library: Intel MPI 2018.1.163
–  cache/quadrant (The amount of memory used at each node is less than

2 GB)
–  Each MPI process has 64 cores and 64 threads.

17 2018/12/17 Parallel Fast Fourier Transforms

Results of automatic tuning of parallel 1-D
FFTs (Oakforest-PACS, 1024 nodes)	

N 𝑃 NDIV GFlops 𝑃↓𝑥  𝑃↓𝑦  NDIV GFlops
16M 1024 4 2.7 32 32 1 53.1

64M 1024 4 13.8 8 128 1 148.1

256M 1024 4 75.6 16 64 1 416.9

1G 1024 4 359.6 32 32 1 1241.4

4G 1024 4 479.3 8 128 1 1509.6

16G 1024 4 839.9 1024 1 1 2749.3

FFTE 6.2alpha FFTE 6.2alpha with AT

18 2018/12/17 Parallel Fast Fourier Transforms

Performance of parallel 1-D FFTs
(Oakforest-PACS, 1024 nodes)	

0

500

1000

1500

2000

2500

3000

3500

4000

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G 16G 32G

G
Fl

op
s	

Length of transform	

FFTE 6.2alpha (no overlap) FFTE 6.2alpha (NDIV=4)
FFTE 6.2alpha with AT FFTW 3.3.8

19 2018/12/17 Parallel Fast Fourier Transforms

Performance of parallel 1-D FFTs
(Cori, 1024 nodes)	

0

500

1000

1500

2000

2500

3000

3500

4000

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G 16G 32G

G
Fl

op
s	

Length of transform	

FFTE 6.2alpha (no overlap) FFTE 6.2alpha (NDIV=4)
FFTE 6.2alpha with AT FFTW 3.3.8

20 2018/12/17 Parallel Fast Fourier Transforms

Performance of parallel 1-D FFTs
(Oakforest-PACS vs Cori, 1024 nodes)	

0

500

1000

1500

2000

2500

3000

3500

4000

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G 16G 32G

G
Fl

op
s	

Length of transform	

FFTE 6.2alpha with AT (OFP) FFTE 6.2alpha with AT (Cori)

21 2018/12/17 Parallel Fast Fourier Transforms

Performance of all-to-all communication
(Oakforest-PACS vs Cori, 1024 nodes)	

0

200

400

600

800

1000

1200

1400

B
an

dw
id

th
 (M

B
/s

ec
)	

Message size (bytes)	

MPI_Alltoall (OFP) Alltoall with AT (OFP)
MPI_Alltoall (Cori) Alltoall with AT (Cori)

22 2018/12/17 Parallel Fast Fourier Transforms

Breakdown of execution time in
FFTE 6.2alpha (no overlap)

(Oakforest-PACS, N=2↑25 ×number of
nodes)	

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16 32 64 128 256 512 1024

Ti
m

e
(s

ec
)	

Number of nodes	

Computation Communication

23 2018/12/17 Parallel Fast Fourier Transforms

Conclusion	
•  We proposed an implementation of parallel 1-D FFT

with automatic tuning on cluster of Intel Xeon Phi
processors.

•  We used a computation-communication overlap
method that introduces a communication thread with
OpenMP.

•  An automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap, was
implemented.

•  The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on cluster of Intel Xeon Phi processors.

24 2018/12/17 Parallel Fast Fourier Transforms

