Automatic Tuning for Parallel FFTs
on Cluster of Intel Xeon Phi
Processors

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan

2018/12/17 Parallel Fast Fourier Transforms

Outline

Background

Objectives

Six-Step FFT Algorithm

In-Cache FFT Algorithm and Vectorization
Computation-Communication Overlap
Automatic Tuning of Parallel 1-D FFT
Performance Results

Conclusion

2018/12/17 Parallel Fast Fourier Transforms

Background

The fast Fourier transform (FFT) is widely used in
science and engineering.

Parallel FFTs on distributed-memory parallel
computers require intensive all-to-all
communication, which affects their performance.

How to overlap the computation and the all-to-all

communication is an issue that needs to be
addressed for parallel FFTs.

Moreover, we need to select the optimal
parameters according to the computational
environment and the problem size.

2018/12/17 Parallel Fast Fourier Transforms

Objectives

Several FFT libraries with automatic tuning have
been proposed.

— FFTW, SPIRAL, and UHFFT

An Implementation of parallel 1-D FFT on cluster of

ntel Xeon Phi coprocessors has been presented
Park et al. 2013].

However, to the best of our knowledge, parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors has not yet been reported.

We propose an implementation of a parallel 1-D
FFT with automatic tuning on cluster of Intel Xeon
Phi processors.

2018/12/17 Parallel Fast Fourier Transforms 4

Approach

 The parallel 1-D FFT implemented is based on the
six-step FFT algorithm [Bailey 90], which requires
two multicolumn FFTs and three data
transpositions.

» Using this method, we have implemented an
automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap.

2018/12/17 Parallel Fast Fourier Transforms 5

Six-Step FFT Algorithm [Bailey90]

« Step 1: Transpose

» Step 2: Perform 7241 individual 742 -point
multicolumn FFTs

« Step 3: Perform twiddle factor (wdndl nd2 T
T £l2)
multiplication

« Step 4: Transpose

» Step 5: Perform 7242 individual 741 -point
multicolumn FFTs

» Step 6: Transpose

2018/12/17 Parallel Fast Fourier Transforms

Parallel 1-D FFT Algorithm Based on
Six-Step FFT

Global
Transpose

N
2

N

Perform
twiddle factor
(wimvir miz 11
K12)

multiplication
Global

Transpose

Global
Transpos

N
1

2018/12/17 Parallel Fast Fourier Tra

In-Cache FFT Algorithm and

Vectorization

* Forin-cache FFT, we used radix-2, 3, 4, 5, 8, 9,
and 16 FFT algorithms based on the mixed-radix
FFT algorithms [Temperton 83].

 Automatic vectorization was used to access the
Intel AVX-512 instructions on the Knights Landing
Processor.

 Although higher radix FFTs require more floating-
point registers to hold intermediate results, the
Knights Landing processor has 32 ZMM 512-bit
registers.

2018/12/17 Parallel Fast Fourier Transforms

Optimization of Parallel 1-D FFT on
Knights Landing Processor

COMPLEX*16 X(N1,N2),Y(N2,N1)
ISOMP PARALLEL DO COLLAPSE(2) PRIVATE(I,J,JJ)
DO 11=1,N1,NB
DO JJ=1,N2,NB
DO I=I1,MIN(II+NB-1,N1)
DO J=JJ,MIN(JJ+NB-1,N2)

Y(J,H)=X(1,J)
END DO
END DO To expand the outermost loop,
EN%N[[))ODO the double-nested loop can be
SOMP PARALLEL DO collapsed into a single-nested loop.
DO I=1,N1

CALL IN_CACHE_FFT(Y(1,1),N2)
END DO

2018/12/17 Parallel Fast Fourier Transforms 9

Computation-Communication
Overlap [I[domura et al. 2014]

ISOMP PARALLEL
ISOMP MASTER

MPIl communication

— MPI| communication is performed

on the master thread

'SOMP END MASTER —— No barrier synchronization
ISOMP DO SCHEDULE(DYNAMIC)

DO I=1,N
Computation — Computation is performed
END DO by a thread other than the

somp po < Implicit barrier . aster thread
DO I=1,N synchronization

Computation using the <— Computation is performed

result of communication after completion of the

END DO MPIl communication
1ISOMP END PARALLEL

2018/12/17 Parallel Fast Fourier Transforms 10

Without
overlap

Overlap
(NDIV=2)

Overlap
(NDIV=4)

2018/12/17

Pipelined Computation-
Communication Overlap

Parallel Fast Fourier Transforms

11

Automatic Tuning of Parallel 1-D FFT

* The automatic tuning process consists of
two steps:

— Automatic tuning of all-to-all communication

— Selection of the number of divisions NDIV for the
computation-communication overlap

2018/12/17 Parallel Fast Fourier Transforms 12

Optimizing of All-to-All
Communication

* An optimized all-to-all collective algorithm for
multi-core systems connected using modern
InfiniBand network interfaces [Kumar et al.

08].

* The all-to-all algorithm completes in two
steps, intra-node exchange and inter-node
exchange.

2018/12/17 Parallel Fast Fourier Transforms 13

Two-Phase All-to-All Algorithm

* We extend the all-to-all algorithm to the general
case of P=Plx X Ply MPI processes.

1. Local array transpose from
(NV/PT2, Plx, Ply)to (N/PT2, Ply,
Plx),
where /Vis the total number of elements.

Then Ply simultaneous all-to-all communications
across Alx MPI processes are performed.

2. Local array transpose from
(NV/PT2, Ply, Plx)to (N/PT2, Plx,
Ply).
2013'19@n Plx simultanequs.all-to-all communications

Automatic Tuning of All-to-All

Communication

The two-phase all-to-all algorithm requires twice the
total amount of communications compared with the
ring algorithm.

However, for small to medium messages, the two-

phase all-to-all algorithm is better than the ring
algorithm due to the smaller startup time.

Automatic tuning of all-to-all communication can be
accomplished by performing a search over the

parameters of all of 2dx and Ply.

If P=Plx XPly is a power of two, the size of
search space is logJ2 7.

2018/12/17 Parallel Fast Fourier Transforms 15

Selection of Number of Divisions for
Computation-Communication Overlap

When the number of divisions for computation-
communication overlap is increased, the overlap ratio
also increases.

On the other hand, the performance of all-to-all
communication decreases due to reducing the
message size.

Thus, a tradeoff exists between the overlap ratio and
the performance of all-to-all communication.

The default overlapping parameter of the original FFTE
6.2alpha is NDIV=4.

In our implementation, the overlapping parameter
NDIV is varied between 1, 2, 4, 8 and 16.

2018/12/17 Parallel Fast Fourier Transforms 16

Performance Results

« To evaluate the parallel 1-D FFT with automatic tuning (AT), we
compared its performance with that of the FFTW 3.3.8, the FFTE
6.2alpha (http://www.ffte.jp/) and the FFTE 6.2alpha with AT.

« The performance was measured on the Oakforest-PACS (8208
nodes) at Joint Center for Advanced HPC (JCAHPC) and Cori
(9688 nodes) at NERSC.

— CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)

— Interconnect: Intel Omni-Path Architecture (OFP),
Cray Aries with Dragonfly topology (Cori)

— Compiler: Intel Fortran compiler 18.0.1.163 (for FFTE)
Intel C compiler 18.0.1.163 (for FFTW)

— Compiler option: “-O3 -xMIC-AVX512 -qopenmp”
— MPI library: Intel MPI 2018.1.163

— cache/quadrant (The amount of memory used at each node is less than
2 GB)

— Each MPI process has 64 cores and 64 threads.

2018/12/17 Parallel Fast Fourier Transforms 17

Results of automatic tuning of parallel 1-C
FFTs (Oakforest-PACS, 1024 nodes)

FFTE 6.2alpha FFTE 6.2alpha with AT

N Z INDIV| GFlops | #% | £ |NDIV| GFlops
16M (1024 | 4 2.7 32 | 32 1 53.1
64M |1024| 4 13.8 8 | 128 1 148.1

256M [1024 | 4 75.6 16 | 64 1 416.9

1G (1024 4 359.6 32 | 32 1 1241.4
4G [1024| 4 479.3 8 | 128 1 1509.6
16G [1024| 4 839.9 1024 | 1 1 2749.3

2018/12/17 Parallel Fast Fourier Transforms 18

Performance of parallel 1-D FFTs
(Oakforest-PACS, 1024 nodes)

4000
3500 /
3000 -
» 2500
S
2 2000
© 4500
1000
500

0
16M 32M 64M 128M 256M 512M 1G 2G 4G 8G 16G 32G

Length of transform

——FFTE 6.2alpha (no overlap)—*—FFTE 6.2alpha (NDIV=4)
FFTE 6.2alpha with AT ——FFTW 3.3.8

2018/12/17 Parallel Fast Fourier Transforms 19

Performance of parallel 1-D FFTs
(Cori, 1024 nodes)

4000
3500
3000

» 2500
9]
© 2000

© 1500 /

1000
500 —

0 .:t;{'o—/,

16M 32M 64M 128M 256M 512M 1G 2G 4G 8G 16G 32G
Length of transform

——FFTE 6.2alpha (no overlap)—*—FFTE 6.2alpha (NDIV=4)
FFTE 6.2alpha with AT ——FFTW 3.3.8

2018/12/17 Parallel Fast Fourier Transforms 20

Performance of parallel 1-D FFTs
(Oakforest-PACS vs Cori, 1024 nodes)

4000
3500
3000

,, 2500
)

22000

O
1500
1000

500

0
16M 32M 64M 128M 256M 512M 1G 2G 4G 8G 16G 32G

Length of transform

——FFTE 6.2alpha with AT (OFP) ——FFTE 6.2alpha with AT (Cori)

2018/12/17 Parallel Fast Fourier Transforms 21

Performance of all-to-all communication
(Oakforest-PACS vs Cori, 1024 nodes)

Bandwidth (MB/
o))
S
S

'\b (bq/ (.Ob(r\(ﬁ) (1?3%(0'\(1/ '{l‘ (1\/1\~ b\‘b q;l*\(gl‘(bq‘/l‘%&l‘ Q;J\‘ 617 (1\/17
Message size (bytes)

——MPI_Alltoall (OFP) —*Alltoall with AT (OFP)
MPI_Alltoall (Cori) —*—Alltoall with AT (Cori)

2018/12/17 Parallel Fast Fourier Transforms

22

DIedkdowll O exeCulorn ulmne In

FFTE 6.2alpha (no overlap)
(Oakforest-PACS, N=2 T25 xnumber of

2 nodes)
i 4
2.5
— 2
o
(]
@
- 1.5
£
=
0
1 2 4 8 16 32 64 128 256 512 1024

Number of nodes

® Computation ®Communication

2018/12/17 Parallel Fast Fourier Transforms 23

Conclusion

We proposed an implementation of parallel 1-D FFT
with automatic tuning on cluster of Intel Xeon Phi
processors.

We used a computation-communication overlap

method that introduces a communication thread with
OpenMP.

An automatic tuning facility for selecting the optimal
parameters of the all-to-all communication and the
computation-communication overlap, was
Implemented.

The performance results demonstrate that the
proposed implementation of a parallel 1-D FFT with
automatic tuning is efficient for improving the
performance on cluster of Intel Xeon Phi processors.

2018/12/17 Parallel Fast Fourier Transforms 24

