Challenges of efficient Fast Fourier Transform

Mahendra Verma IIT Kanpur

http://turbulencehub.org

<u>mkv@iitk.ac.in</u>

Definition of Fourier Transform

$$x \rightarrow k \qquad f(x) = \sum_{k} f(k) \exp(ikx)$$
$$k \rightarrow x \qquad f(k) = \sum_{x} f(x) \exp(-ikx)$$

Time complexity: O(N²)

Fast Fourier transform

Cooley and Tukey, 1965

0 1 2 3 4 5 6 7

FT(f) split into FT of even and odd indexed data.

Continue this operation at all levels.

Divide and conquer

Time complexity: O(N log N)

Why is it important?

Multiscale problems

Image processing

Structures at different scales...

Interactions across scales

Accurate derivative solver

$$f(x) = \sum_{k} f(k) \exp(ikx)$$
$$\frac{d}{dx} f(x) = \sum_{k} [ikf(k)] \exp(ikx)$$

Magnetic field reversal

Geomagnetism

Glatzmaier & Roberts Nature, 1995

Polarity reversals after random time intervals (tens of millions of years to 50K years).

Last reversal took place around 780,000 years ago.

Complexity

Atmospheric simulation

1 km grid on Earth x 10 m along vertical

 $40000 \times 40000 \times 10000 = 64 \times 10^{12}$

Does not fit in a single machine.

PARALLEL programming

Parallel FFT

Parallel libraries

- FFTW
- P3DFFT
- FFTK
- PFFT
- Hybrid FFT
- GPU FFT

Slab decomposition

$f(x, y, z) = \sum_{k_x} \sum_{k_y} \sum_{k_z} \hat{f}(k_x, k_y, k_z) \exp[i(k_x x + k_y y + k_z z)]$

Divide the data among 4 procs

All_to_all communication

Transpose-free communication

12-15% faster compared to FFTW

Limitations

• For N³ grid, maximum number of processor = N

Pencil decomposition

Two sets of communications

But only among a set of processors

FFTW

- Slab decomposition
- Frigo and Johnson, MIT, ~1999
- C language
- Optimises for a given hardware

P3DFFT

- First pencil decomposition
- Dmitry Pekurovsk, San Diego Supercomputer Center (SDSC) ~1999
- Communication time ~ $p^{-2/3}$
- 8192³ grid, 65536 cores (SIAM, J. Sci Comput. 2012)
- Used for spectral codes of PK Yeung with 262114 cores.

PFFT

- Pencil
- Pippig
- 1024³ grid, 262144 cores (SIAM 2013)

GPU FFT

- DiGPUFFT, Czechowski et al. (ACM conference 2012)
- Takahashi, Japan

Hybrid FFT

- OpenMP+MPI
- Fortran
- Mininni et al. (Parallel Comput., 2011)
- 3072³ grid, 20000 cores with 6/12 threads.

FFTK

- FFT Kanpur
- Pencil-based
- Chatterjee, Verma, and group members of Kanpur
- Scaled up to 196608 cores of Shaheen II of KAUST for 3072³
- Tested up 6144³ grid.
- Fluid solver TARANG uses it.

Scaling of FFT pencil

$$T = c_1 D\left(\frac{1}{p^{\gamma_1}}\right) + c_2 D\left(\frac{1}{n^{\gamma_2}}\right) = C\left(\frac{1}{p^{\gamma}}\right)$$

On Shaheen 2 at KAUST with Anando Chatterjee, Abhishek Kumar, Ravi Samtaney, Bilel Hadri, Rooh Khurram

Cray XC40 ranked ~20th in top500

Chatterjee et al., JPDC 2018

Strong scaling

Weak scaling

Table 4

FFTK scaling on Cray XC40 for the FFF and SFF basis: The exponents γ_1 for the computation time (T_{comp}), γ_2 for the communication time (T_{comm}), and γ for the total time (T) [refer to Eq. (17) for definition]. Maximum cores used: 196608.

Grid	γı	72	Y
FFF			
768 ³ 1536 ³ 3072 ³	0.79 ± 0.14 0.93 ± 0.08 1.08 ± 0.03	0.43 ± 0.09 0.52 ± 0.04 0.60 ± 0.02	0.43 ± 0.09 0.55 ± 0.04 0.64 ± 0.02
SFF			
768 ³ 1536 ³ 3072 ³	0.82 ± 0.13 0.97 ± 0.07 0.99 ± 0.04	0.44 ± 0.03 0.63 ± 0.02 0.70 ± 0.05	0.46 ± 0.04 0.66 ± 0.01 0.73 ± 0.05

Table 5

FFTK on Cray XC40: Effective FLOP rating in Giga FLOP/s of Cray XC40 cores for various grid sizes and ppn. The efficiency *E* is the ratio of the effective per-core FLOP rating and the peak FLOP rating of each core (approximately 36 G FLOP/s).

Grid size	768 ³	1536 ³	3072 ³
GFlop/s	0.45	0.53	0.64
2	0.013	0.015	0.018

Blue Gene/P

communication time (T_{comm}), and γ for the total time (T) [refer to Eq. (1) nition]. The maximum nodes used is 16384 with 1ppn, 2ppn, and 4ppn.

ppn	2048 ³	4096 ³
1	1.00 ± 0.01	0.97 ± 0.01
2	1.00 ± 0.02	0.96 ± 0.01
4	1.00 ± 0.03	0.95 ± 0.03
1	0.7 ± 0.1	0.9 ± 0.1
2	0.7 ± 0.1	0.8 ± 0.2
4	0.7 ± 0.1	0.8 ± 0.2
1	0.87 ± 0.05	0.94 ± 0.05
2	0.81 ± 0.05	0.96 ± 0.09
4	0.76 ± 0.07	0.9 ± 0.1

Table 3

FFTK on Blue Gene/P: Effective FLOP rating in Giga FLOP/s of Blue Gene/P cores for various grid sizes and ppn. The efficiency *E* is the ratio of the effective per-core FLOP rating and the peak FLOP rating of each core (approximately 3.4 G FLOP/s).

Grid	ppn	Giga FLOP/s	2
2048 ³	1	0.38	0.11
	2	0.28	0.082
	4	0.17	0.050
4096 ³	1	0.36	0.11
	2	0.25	0.073
	4	0.14	0.041
8192 ³	1	0.36	0.11
	2	0.26	0.076
	4	0.15	0.044

Effective flop rating/core

Cray XC40 (~1.5 %)

BlueGene/P

(~10%)

Speed up

- Overlap communication and computation ?
- GPU ?
- Xeon Phi?
- Optimise communication

Node configuration

Adjacent nodes in comm: both along x & y

Anando Chatterjee, Samar Aseeri, David Keys

Spectral method

Set of ODEs

$$\frac{du_i(\mathbf{k})}{dt} = -jk_m \widehat{u_m(\mathbf{r})u_i(\mathbf{r})} - jk_i p(\mathbf{k}) - \nu k^2 u_i(\mathbf{k})$$

Tarang scaling

On Shaheen at KAUST

Acknowledgements

Students:	Ported to:
Anando Chatteriee	PARAM, CDAC
	Shaheen, KAUS
Abhishek Kumar	HPC system IITk
Roshan Samuel	
Sandeep Reddy	
	Eunding

Funding

Dept of Science and Tech., India Dept of Atomic Energy, India KAUST (computer time)

Faculty:

Mani Chandra

Sumit Kumar & Vijay

Ravi Samtaney

Fahad Anwer

Thank you!