
Performance Optimization of Multithreaded 2D FFT on
Multicore Processors

Challenges and Solution Approaches

Ravi Reddy Manumachu
Research Fellow

(ravi.manumachu@ucd.ie)

School of Computer Science
University College Dublin, Ireland



Overview

Challenges illustrated using experiments on a modern multicore
processor

Solution methods

Parallel computing using load balancing
Parallel computing using load imbalancing

Conclusions and Future work

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 2 / 27



Experimental Platform

Technical Specifications Intel Haswell Multicore Processor
Processor Intel Xeon CPU E5-2699 v3 @ 2.30GHz

OS CentOS 7.1.1503

Microarchitecture Haswell

Memory 256 GB

Core(s) per socket 18

Socket(s) 2

NUMA node(s) 2

L1d cache 32 KB

L1i cache 32 KB

L2 cache 256 KB

L3 cache 46080 KB

NUMA node0 CPU(s) 0-17,36-53

NUMA node1 CPU(s) 18-35,54-71

Table: Specification of the Intel Haswell Multicore Profile used to construct the
performance profiles.
Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 3 / 27



Overview of applications

FFTW-2.1.5 2D-FFT application.

Executed using 72 threads.
FFT flags (FFTW ESTIMATE).

FFTW-3.3.7 2D-FFT application.

Executed using 72 threads.
FFT flags (FFTW ESTIMATE).

Intel MKL 2D-FFT application.

Executed using 36 threads.
FFT flags (FFTW ESTIMATE).

All three applications compute 2D-DFT of a complex signal matrix of
size N × N.

Each thread is bound to a core using numactl.

Performance = 5.0× N2 × log2(N2).

Test dataset contains 1000 problem sizes ranging from N = 128 to
N = 64000.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 4 / 27



Challenges - FFTW-2.1.5 vs FFTW-3.3.7

Performance profiles of FFTW-2.1.5 and FFTW-3.3.7 computing 2D-DFT of size

N × N.
Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 5 / 27



Challenges - FFTW-2.1.5 vs FFTW-3.3.7 - Averages

The average performances of FFTW-2.1.5 vs FFTW-3.3.7.
Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 6 / 27



Challenges - FFTW-2.1.5 vs FFTW-3.3.7 - Averages

Peak performances of FFTW-2.1.5 and FFTW-3.3.7 are
(17841,16989) MFLOPs.

Average performances of FFTW-2.1.5 and FFTW-3.3.7 are
(7033,5065) MFLOPs.

FFTW-2.1.5 is better than FFTW-3.3.7 for over 529 problem sizes
(out of 1000).

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 7 / 27



Challenges - FFTW-2.1.5 vs Intel MKL FFT

Performance profiles of FFTW-2.1.5 and Intel MKL FFT computing 2D-DFT of

size N × N.Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 8 / 27



Challenges - FFTW-2.1.5 vs Intel MKL FFT - Averages

The average performances of FFTW-2.1.5 vs FFTW-3.3.7.Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 9 / 27



Challenges - FFTW-2.1.5 vs Intel MKL FFT - Averages

Peak performances of FFTW-2.1.5 and Intel MKL FFT are
(17841,39424) MFLOPs.

Average performances of FFTW-2.1.5 and Intel MKL FFT are
(7033,9572) MFLOPs.

FFTW-2.1.5 is better than Intel MKL FFT for over 162 problem sizes
(out of 1000).

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 10 / 27



Challenges - FFTW-3.3.7 vs Intel MKL FFT

Performance profiles of FFTW-2.1.5 and Intel MKL FFT computing 2D-DFT of

size N × N.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 11 / 27



Challenges - FFTW-3.3.7 vs Intel MKL FFT - Averages

The average performances of FFTW-2.1.5 vs FFTW-3.3.7.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 12 / 27



Challenges - FFTW-3.3.7 vs Intel MKL FFT - Averages

Peak performances of FFTW-3.3.7 and Intel MKL FFT are
(16989,39424) MFLOPs.

Average performances of FFTW-3.3.7 and Intel MKL FFT are
(5065,9572) MFLOPs.

FFTW-3.3.7 is better than Intel MKL FFT for over 199 problem sizes
(out of 1000).

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 13 / 27



Solution approaches

Optimization through source code analysis and tuning.

Optimization using solutions for larger problem sizes with better
performance.

Optimization using model-based parallel computing (will be covered
here).

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 14 / 27



Parallel computing using load balancing (PFFT-LB)

PFFT-LB computing 2D-DFT of signal matrix M of size N × N (N = 16)
using four identical processors. Each processor gets four rows each.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 15 / 27



Parallel computing using load balancing (PFFT-LB)

Parallel algorithm is based on the sequential algorithm employing row
decomposition method.

It is executed using p processors. It consists of four steps.

Step 1. Processor Pi executes sequential 1D-FFTs on rows
(i − 1)× N

p + 1, ..., i × N
p .

Step 2. Transpose the matrix M.

Step 3. Processor Pi executes sequential 1D-FFTs on rows
(i − 1)× N

p + 1, ..., i × N
p .

Step 4. Transpose the matrix M.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 16 / 27



PFFT-LB using FFTW-3.3.7 on Intel Haswell Server

PFFT-LB is executed using p groups of t threads each. A group of t
threads constitutes a processor.

All combinations where (p × t = 36) and (p × t = 72) are considered.

Combinations (p, t) for p × t = 36

(1, 36), (2, 18), ...(36, 1)

Combinations (p, t) for p × t = 72

(1, 72), (2, 36), ...(72, 1)

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 17 / 27



PFFT-LB: pseudocode for Steps 1,3 using FFTW-3.3.7

fftw_init_threads ();

fftw_plan_with_nthreads(t);

fftw_plan plan1 = fftw_plan_many_dft (..., FFTW_ESTIMATE);

fftw_plan plan2 = fftw_plan_many_dft (..., FFTW_ESTIMATE);

...

fftw_plan planp = fftw_plan_many_dft (..., FFTW_ESTIMATE);

#pragma omp parallel sections num_threads(p)

{

#pragma omp section

{

fftw_execute(plan1);

fftw_destroy_plan(plan1);

}

#pragma omp section

{

fftw_execute(plan2);

fftw_destroy_plan(plan2);

}

...

#pragma omp section

{

fftw_execute(planp);

fftw_destroy_plan(planp);

}

}

fftw_cleanup_threads ();

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 18 / 27



PFFT-LB: pseudocode for Steps 1,3 using Intel MKL FFT

fftw_init_threads ();

fftw_plan_with_nthreads(t);

#pragma omp parallel sections num_threads(p)

{

#pragma omp section

{

fftw_plan plan1 = fftw_plan_many_dft (..., FFTW_ESTIMATE);

fftw_execute(plan1);

fftw_destroy_plan(plan1);

}

#pragma omp section

{

fftw_plan plan1 = fftw_plan_many_dft (..., FFTW_ESTIMATE);

fftw_execute(plan2);

fftw_destroy_plan(plan2);

}

...

#pragma omp section

{

fftw_plan plan1 = fftw_plan_many_dft (..., FFTW_ESTIMATE);

fftw_execute(planp);

fftw_destroy_plan(planp);

}

}

fftw_cleanup_threads ();

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 19 / 27



PFFT-LB: Performance improvements

Average performance for FFTW-3.3.7 is 7041 MFLOPs. Best
combination varies with problem size.

Average speedup for FFTW-3.3.7 is 2.7x. Maximum speedup is 6.8x.

Average performance for Intel MKL FFT is 10818 MFLOPs. Best
combination is 2 teams of 18 threads each.

Average speedup for Intel MKL FFT is 1.4x. Maximum speedup is 2x.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 20 / 27



Parallel computing using load imbalancing
(PFFT-FPM-LIMB)

PFFT-FPM-LIMB is executed using p identical processors.

Inputs are:

Signal matrix of size N × N.
Speed functions, S = {S1, · · · ,Sp}, where
Si = {si (x1, y1), · · · , si (xm, ym)} is the speed function of processor Pi .

si (x , y) represents the speed of execution of x number of 1D-FFTs of

length y by the processor Pi . si (x , y) = 5.0×x×y×log2(y)
t .

t is the time of execution of x number of 1D-FFTs of length y.

Output is the transformed signal matrix.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 21 / 27



PFFT-FPM-LIMB: Main steps

Main steps to execute 2D FFT of size N × N.

Step 1. Partition rows.

Speed functions S are sectioned by the plane y = N.
A set of p curves on this plane is produced which represents the speed
functions against variable x given parameter y = N is fixed.
Now the number of rows N is unevenly distributed between the
processors using the p speed curves as input.
The workload partition of N is returned in d where d [i ] contains the
number of rows owned by Processor Pi .
Each row in d [i ] is padded by a length lpad where

(
d [i ]×lpad

si (d [i ],lpad )
< d [i ]×N

si (d [i ],N) ).

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 22 / 27



PFFT-FPM-LIMB: Main steps... continued...

Step 2. Processor Pi executes sequential 1D-FFTs on its padded
rows

∑i−1
k=1 d [i ] + 1, · · · ,

∑i
k=1 d [i ].

Step 3. The signal matrix M (excluding the padded region) is
transposed.

Step 4. Processor Pi executes sequential 1D-FFTs on its padded
rows

∑i−1
k=1 d [i ] + 1, · · · ,

∑i
k=1 d [i ].

Step 5. Same as Step 3.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 23 / 27



PFFT-FPM-LIMB: Speedup for FFTW-3.3.7

Speedup of PFFT-FPM-LIMB for FFTW-3.3.7.
Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 24 / 27



PFFT-FPM-LIMB: Speedup for Intel MKL FFT

Speedup of PFFT-FPM-LIMB for Intel MKL FFT.
Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 25 / 27



PFFT-FPM-LIMB: Summary

Average performance for FFTW-3.3.7 is 7297 MFLOPs.

Average speedup for FFTW-3.3.7 is 3x. Maximum speedup is 9.4x.

Average performance for Intel MKL FFT is 11170 MFLOPs.

Average speedup for Intel MKL FFT is 2.7x. Maximum speedup is
5.9x.

Intel MKL FFT is on an average 55% better than FFTW-3.3.7.

There are 81 problem sizes (out of 1000) where FFTW-3.3.7 is better
than Intel MKL FFT.

Improvement of average performance of FFTW-3.3.7 by 42% over
FFTW-2.1.5.

Improvement of average performance of Intel MKL FFT by 24% over
FFTW-2.1.5.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 26 / 27



Conclusions and Future work

Software implementations are available at:
https://git.ucd.ie/manumachu/hcllimb.

For large problem sizes, major variations in performance still remain
for FFTW-3.3.7 and Intel MKL FFT. We are exploring solutions to
remove them.

Optimization of 3D FFT using the same methods.

Understanding the better performance demonstrated by some teams
using performance monitoring counts or other debugging tools.

Ravi Reddy Manumachu (CS UCD) HiPC 2018 PFFT 17/12/2018 27 / 27


