Optimizing the Fast Fourier Transform using
Mixed-Precision on Tensor Core Hardware

Anumeena Sorna, Xiaohe Cheng, Eduardo D’Azevedo, Kwai
Wong, & Stanimire Tomov

\ \
\/(HF\(

e

(

(
;
/\/\fﬁ(\

—IIES % OAK RIDGE

Computational Sciences

Background

Fast Fourier Transform is a useful CulTY PERPORIAN

tool in many high performance % ______
computing applications o U Onty

FFT computation has high 0 I '

parallelism) |

Utilize parallel architecture: GPUs, -

NVIDIA CUDA y

State of the art: NVIDIA CUDA Fast .

Fourier Transform library (cuFFT) e i

Motivation

Tensor cores in new Volta GPU
architecture

Deliver up to 125 Tensor TFLOPS e (e o Cu

Co,z c0,3
Speedup FFT calculation if fully D = |BSET | | R
utilized

3 2 ! 3).). CJ.D c3.1 c3 2 c3,3
FP16 or FP32 FP16 FP16 FP16 or FP32

Motivation

cuFFT has yet to utilize tensor cores due to
accuracy limitations

exponent fraction
Half precision number: sign (5 bit) (10 bit)
o 65504 (max half precision) | |
° 6.10352 x 10~ (minimum positive normal)
o 1.0009765625 (next smallest float after 1)
The narrow dynamic range does not satisfy the 105 1% %)

requirements of scientific applications

Motivation

Mixed-precision approach in computational physics
o Single precision calculation is faster than double

o Mix 32-bit and 64-bit arithmetic for acceleration
o Design algorithm to maintain 64-bit accuracy

Favorable properties of FFT
o Linearity: Straightforward splitting and combination

o Numerical stability: preserve norm, avoid error propagation

Methodology - FFT

Every signal can be broken down into signals of different frequencies

The Discrete Fourier transform converts a time domain signal to a frequency
domain signal:

X(K) =3 x(n)- A5
n=0

Inverse:

x(n) = %2){(@ Az

Methodology - FFT

X(k) =3 x(n)- s

It can be expressed as matrix multiplication:

X[0] I l I x[0]

(L I L AT 7y LAl

X:z:] W,\z W; : WAZ V-1 2:
XIN-1] [w7 D e g (XN -1]

Methodology — FFT ..

N2 point FFTs

N v

> —>

N1 N1

Length N vector is splitinto N2 indivdual N1-length FFTs
a matrix of size N1 * N2 are taken
Then transposed

Methodology — FFT ..

N1 is chosen to be 4, as 4*4 Fourier matrix is accurately representable in

FP16
1 1 1 1]
1 1
1 1 1 17 Foew =1, | | _
Foo -J -1 1 0 -1 0 |
1 -1 1 -1
_1 J _]_ _J} 0 0 0 O
0 1 0 -1
Fiimag =
#mag o 0 0 0
0 -1 0 1 |

Methodology - Splitting

Matrix multiplication is needed in:
o The base case of recursion

o The N1-point FFT

We split the FP32 input before multiplication

And carry out matrix multiplication in FBY)s X4 ()+FXilo ()

Rescale the results and combine them together

Implementation

We implemented the twiddle multiplication, transpose, splitting, and
combine kernels using CUDA to utilize parallel hardware

The splitting factor is dynamically determined

alj=max—+ [xli] | mﬂ ______________ n
Ll =max—i [x LiJ | E
The multiplication is performed by calling cuBLAS API

Batch execution is supported by handling each input independently and in
parallel

Implementation

The classical 4-step algorithm requires 3 matrix transpose at every level

We employ the transpose property to avoid 2 of them
(FXITYIT =X-FIT
Note that Fourier matrix is symmetric for N=4

We adapted the transpose and combine kernel, and change the order of
operands in matrix multiplication

Experimental Results
The dynamic splitting method

preserves high accuracy over a

: : [-107, 107] 14.6843805313 0.0000568428
wide range of inputs
[-10°¢, 10°¢9] 0.5265535712 0.0000029240
[-103, 109 0.0126493834 0.0000029515
[-1.0, 1.0] 0.0126134995 0.0000029261
[-102, 107 0.0125578260 0.0000029014
[-104, 104] N/A 0.0000028950
[-10'0, 1010] N/A 0.0000030171

Table1. Relative error of half-precision cuFFT and our
implementation at different input data ranges.

Experimental Results

Compared with matrix

. GEMM
mu.ltl.phcatlon, the.tlm.e spent on =t
splitting and combine is not
significant.

Time(us)

41 42 43 44 43 40 47 48
Input Size
Figurel. Execution time breakdown at different
input sizes. The matrix multiplication (by calling
cublasGemmStridedBatchedEx) consumes
around 90% of total fime.

Performance Analysis

Fig. 1. Accuracy of half-precision cuFFT and our implementation.

Performance Analysis

Average Time for Average Time for 32-

Mixed Precision FFT bit FFT
2.788934 ms 6.334454 ms

lime (ms)

a1 anl an3 ang ans 4%6 any -

Fig 3. Average execution time of FFT with growing input sizes

Ongoing work

Currently we are trying to overcome the glitch that only allows input sizes less
than 64 kilobits. We expect to see an increased speed of execution with larger

input sizes

Using the 3M Method and other techniques for further optimization

Input-aware auto-tuning splitting algorithm for ill-conditioned inputs may
further improve execution speed and accuracy

Conclusions

Dynamic splitting method performs matrix multiplication in half precision.

Utilizes the tensor cores and efficiently computes fast Fourier transform.

Effectively emulates single precision calculation, and produces highly accurate
results from a variety of inputs.

Acknowledgements

This research project was sponsored by the National Science Foundation through
Research Experience for Undergraduates (REU) award, with additional support from the
Joint Institute of Computational Sciences at University of Tennessee Knoxville.

This project used allocations from the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by the National Science Foundation. In
addition, the computing work was also performed on technical workstations donated
by the BP High Performance Computing Team.

This material is based upon work supported by the U.S. DOE, Office of Science, BES,
ASCR, SciDAC program. This research is sponsored by the Office of Advanced Scientific
Computing Research; U.S. Department of Energy. The work was performed at the Oak
Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No.
De-ACO5- 000R22725.

References

[1] B.-Y. T. Shing-Tai Pan, Chih-Chin Lai, “The implementation of speech recognition systems on
FPGA-based embedded systems with SOC architecture,” JICIC, vol. 7, no. 10, 2011.

[2] M. F. H. Buijs, A. Pomerleau, “Implementation of a fast Fourier transform (FFT) for image
processing applications,” IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 22,

pp. 420-424, 1974.

[3]). Kong and S. Yu, “Fourier transform infrared spectroscopic analysis of protein secondary
structures,” Acta biochimica et biophysica Sinica, vol. 39, no. 8, pp. 549-559, 2007.

[4] X. L. Shuo Chen, “A hybrid GPU/CPU FFT library for large FFT problems,” IEEE 32nd
International Performance Computing and Communications Conference, 2014.

[5] S. C. Stefano Markidis, I. P. Erwin Laure, and J. Vetter, “NVIDIA tensor core programmability,
performance and precision,” Eighth International Workshop on Accelerators and Hybrid Exascale
Systems, 2018.

References

[6] A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek, and J. Kurzak, “Mixed precision
iterative refinement techniques for the solution of dense linear systems,” The International
Journal of High Performance Computing Applications, vol. 21, no. 4, pp. 457-466, 2007.

[7] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, and S. Tomov,
“Accelerating scientific computations with mixed precision algorithms,” Computer Physics
Communications, vol. 180, no. 12, pp. 2526—-2533, 2009.

[8] S. Le Grand, A. W. Gotz, and R. C. Walker, “SPFP: Speed without “ compromisea mixed
precision model for GPU accelerated molecular dynamics simulations,” Computer Physics
Communications, vol. 184, no. 2, pp. 374-380, 2013.

[9] W. M. Gentleman and G. Sande, “Fast fourier transforms: for fun and profit,” in Proceedings
of the November 7-10, 1966, fall joint computer conference. ACM, 1966, pp. 563-578.

References

[10] D. H. Bailey, “FFTs in external or hierarchical memory,” The Journal Of Supercomputing, vol.
4, p. 2335, 1989.

[11] (2018, Jul.) cublas batched gemm throw not supported error with large batch size. [Online].
Available: https://stackoverflow.com/questions/51500189/cublas-batchedgemm-throw-not-

supported-error-with-large-batch-size

