Rank-1 Lattice Based
High-dimensional Approximation
and sparse FFT

Toni Volkmer

joint work with Lutz Kämmerer, Daniel Potts, and Tino Ullrich
Introduction
Approximation of periodic functions based on samples

- torus $\mathbb{T} \simeq [0, 1)$, $\{e^{2\pi ikx}\}_{k \in \mathbb{Z}}$ orthonormal basis of $L_2(\mathbb{T})$
- function $f \in L_2(\mathbb{T})$, $f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e^{2\pi ikx}$, $\hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi ikx} \, dx \in \mathbb{C}$
- smooth function $f \implies$ fast decay of Fourier coefficients \hat{f}_k
- truncated Fourier series $S_I f(x) = \sum_{k \in I} \hat{f}_k e^{2\pi ikx} \approx f(x)$
- $\hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi ikx} \, dx \approx \tilde{\hat{f}}_k := \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_j) e^{-2\pi ikx_j}$, $x_j := \frac{j}{2N}$

\implies transfer to multivariate case (tensorization)

\[
\begin{align*}
\hat{f}_k & \in \mathbb{C} \\
\tilde{\hat{f}}_k & \approx \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_j) e^{-2\pi ikx_j}
\end{align*}
\]

$\mathcal{O}(N \log N)$

[Gauß 1866] [Cooley, Tukey 1965]
Introduction
Approximation of periodic functions based on samples

- **torus** $\mathbb{T} \simeq [0, 1)$, \(\{ e^{2\pi i k x} \}_{k \in \mathbb{Z}} \) orthonormal basis of \(L_2(\mathbb{T}) \)
- **function** \(f \in L_2(\mathbb{T}), \ f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e^{2\pi i k x}, \ \hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx \in \mathbb{C} \)
- **smooth function** \(f \implies \) fast decay of Fourier coefficients \(\hat{f}_k \)
- **truncated Fourier series** \(S_I f(x) = \sum_{k \in I} \hat{f}_k e^{2\pi i k x} \simeq f(x) \)
- **transfer to multivariate case (tensorization)**

\[
\begin{align*}
\hat{f}_k &= \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx \approx \hat{f}_k := \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_j) e^{-2\pi i k x_j}, \ x_j := \frac{j}{2N}
\end{align*}
\]

\(\mathcal{O}(N \log N) \)

[Gauß 1866] [Cooley, Tukey 1965]
Introduction
Approximation of periodic functions based on samples

- torus $\mathbb{T} \simeq [0, 1)$, $\{e^{2\pi ikx}\}_{k \in \mathbb{Z}}$ orthonormal basis of $L_2(\mathbb{T})$
- function $f \in L_2(\mathbb{T})$, $f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e^{2\pi ikx}$, $\hat{f}_k = \int_\mathbb{T} f(x) e^{-2\pi ikx} \, dx \in \mathbb{C}$
- smooth function $f \implies$ fast decay of Fourier coefficients \hat{f}_k
- truncated Fourier series $S_I f(x) = \sum_{k \in I} \hat{f}_k e^{2\pi ikx} \approx f(x)$

\[\hat{f}_k = \int_\mathbb{T} f(x) e^{-2\pi ikx} \, dx \approx \tilde{\hat{f}}_k := \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_j) e^{-2\pi ikx_j}, \; x_j := \frac{j}{2N} \]

\implies transfer to multivariate case (tensorization)

\[\mathcal{O}(N \log N) \]

[Gauß 1866] [Cooley, Tukey 1965]
Introduction

Approximation of periodic functions based on samples

- torus $\mathbb{T} \simeq [0, 1)$, $\{e^{2\pi i k x}\}_{k \in \mathbb{Z}}$ orthonormal basis of $L_2(\mathbb{T})$
- function $f \in L_2(\mathbb{T})$, $f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e^{2\pi i k x}$, $\hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx \in \mathbb{C}$
- smooth function $f \implies$ fast decay of Fourier coefficients \hat{f}_k
- truncated Fourier series $S_I f(x) = \sum_{k \in I} \hat{f}_k e^{2\pi i k x} \approx f(x)$
- $\hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx \approx \tilde{\hat{f}}_k := \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_j) e^{-2\pi i k x_j}$, $x_j := \frac{j}{2N}$

\implies transfer to multivariate case (tensorization)

$|\hat{f}_k|$

$\mathcal{O}(N \log N)$

[Cooley, Tukey 1965] [Gauß 1866]
Introduction
Approximation of periodic functions based on samples

- torus $\mathbb{T} \simeq [0, 1)$, $\{e^{2\pi i k x}\}_{k \in \mathbb{Z}}$ orthonormal basis of $L_2(\mathbb{T})$
- function $f \in L_2(\mathbb{T})$, $f(x) = \sum_{k \in \mathbb{Z}} \hat{f}_k e^{2\pi i k x}$, $\hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx \in \mathbb{C}$
- smooth function $f \implies$ fast decay of Fourier coefficients \hat{f}_k
- truncated Fourier series $S_I f(x) = \sum_{k \in I} \hat{f}_k e^{2\pi i k x} \approx f(x)$
- $\hat{f}_k = \int_{\mathbb{T}} f(x) e^{-2\pi i k x} \, dx \approx \tilde{\hat{f}}_k := \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_j) e^{-2\pi i k x_j}$, $x_j := \frac{j}{2N}$

\implies transfer to multivariate case (tensorization)

- full grid in frequency domain
- equispaced full grid in spatial domain

$\mathcal{O}(N^d \log N)$
curse of dimensionality

\implies assumption: sparsity or smoothness
In this talk

first part:

▶ fast reconstruction of arbitrary high-dimensional trigonometric polynomials

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \] using 1-dimensional FFTs

spatial domain: general known frequency index set \(I \subset \mathbb{Z}^d \)
multiple rank-1 lattice

\[\mathcal{O}(|I| (d + \log |I|) \log^3 |I|) \]

▶ fast approximation \(f(x) \approx \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \) of functions from samples

second part:

▶ unknown frequency index set \(I \) / weights / function space in high dimensions

⇒ dimension-incremental sparse FFT using multiple rank-1 lattices
Multivariate trigonometric polynomials

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x) \]

Fast reconstruction of \(\hat{p}_k \) and approximation of \(f \) using rank-1 lattices

\[f(x) = p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \] arbitrary freq. index set \(I \subset \mathbb{Z}^d, |I| < \infty \)

rank-1 lattice \(R1L(z, M) := \{ x_j := \frac{j}{M} z \text{ mod } 1 \}_{j=0}^{M-1}, z \in \mathbb{Z}^d, M \in \mathbb{N} \), as discretization in spatial domain

\[z = (1, 4) \]
\[M = 11 \]

Korobov '59
Maisonneuve '72
Sloan & Kachoyan '84,'87,'90
Temlyakov '86
Lyness '89
Sloan & Joe '94
Sloan & Reztsov '01
Li & Hickernell '03
Kämmerer & Kunis & Potts '12
Multivariate trigonometric polynomials $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x)$

Fast reconstruction of \hat{p}_k and approximation of f using rank-1 lattices

- $f(x) = p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$, arbitrary freq. index set $I \subset \mathbb{Z}^d$, $|I| < \infty$

- rank-1 lattice $R1L(z, M) := \{ x_j := \frac{j}{M} z \text{ mod } 1 \}_{j=0}^{M-1}$, $z \in \mathbb{Z}^d$, $M \in \mathbb{N}$

- Fast reconstruction of \hat{p}_k using 1-dim. FFT? $\hat{p}_k \overset{?}{=} \frac{1}{M} \sum_{j=0}^{M-1} p_I(x_j) e^{-2\pi i k \cdot x_j}$
Multivariate trigonometric polynomials $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x)$

Fast reconstruction of \hat{p}_k and approximation of f using rank-1 lattices

\Rightarrow reconstruction property: [Kämmerer, Kunis, Potts '12] [Kämmerer '12]

$k \cdot z \not\equiv k' \cdot z \pmod{M}$ for all $k, k' \in I$, $k \neq k'$
Multivariate trigonometric polynomials \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x) \)

Fast reconstruction of \(\hat{p}_k \) and approximation of \(f \) using rank-1 lattices

- \(f(x) \approx p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \), arbitrary freq. index set \(I \subset \mathbb{Z}^d, |I| < \infty \)

- rank-1 lattice \(R_{1L}(z, M) := \{ x_j := \frac{j}{M} z \mod 1 \}_{j=0}^{M-1}, z \in \mathbb{Z}^d, M \in \mathbb{N} \)

- fast reconstruction of \(\hat{p}_k \) using 1-dim. FFT

 \[\Rightarrow \text{reconstruction property: } [\text{Kalmerer, Kunis, Potts '12}] \ [\text{Kalmerer '12}] \]

 \[\forall k, k' \in I, k \neq k' \quad k \cdot z \not\equiv k' \cdot z \pmod{M} \]

- fast approximation of \(f \in L_2(\mathbb{T}^d) \cap C(\mathbb{T}^d) \) using rank-1 lattice sampling

 error estimates in \[[\text{Byrenheid, Kalmerer, Ullrich, V. '17}] \ [V. '17] \]

\[O(M \log M + d |I|) \]
Multivariate trigonometric polynomials $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x)$

Example – function from Sobolev space of dominating mixed smoothness

$\triangleright f(x) := \prod_{s=1}^{d} (2 + \text{sgn}(x_s \mod 1 - \frac{1}{2}) \sin(2\pi x_s)^3),$

\triangleright hyperbolic cross $I := \{k \in 2\mathbb{Z}^d : \prod_{s=1}^{d} \max(1, |k_s|) \leq N\}$

$\begin{align*}
\quad f\left((x_1, x_2)^\top\right), \\
\quad \log_{10} \left| \hat{f}(k_1, k_2)^\top \right|, \\
\quad \text{Relative } L_2(T^d) \text{ error}
\end{align*}$
Multivariate trigonometric polynomials $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x)$

Single vs. multiple rank-1 lattices

- (reconstructing) rank-1 lattice:
 - number of samples M: $|I| \leq M \leq |I|^2$, construction: $O(d |I|^3)$, ($|I| \gtrapprox N$)
 - no additional dependence on spatial dimension d in M
 - very easy and fast computation of Fourier coefficients (single 1-dim. FFT)

\[\Rightarrow \text{two lines of MATLAB code:} \]
\[g_{\text{hat}} = \text{fft}(\text{samples})/M; \]
\[p_{\text{hat}} = g_{\text{hat}}(\text{mod}(I*z',M)+1); \]

- improvements? Use more than one rank-1 lattice! (union of several)

\[\Rightarrow \text{multiple rank-1 lattice sampling [Kämmerer '16] [Kämmerer '17],} \]
\[\text{complexities linear in } d, \text{ almost linear in sparsity } |I| \text{ (for } |I| \gtrapprox N): \]

- samples: \[\leq C |I| \log^2 |I| \text{ (w.h.p.)} \]
- construct lattice: \[\leq C |I| (d + \log |I|) \log^3 |I| \text{ (w.h.p.)} \]
- reconstruction / approximation: \[\leq C |I| (d + \log |I|) \log^3 |I| \]
Multivariate trigonometric polynomials \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x) \)

Single vs. multiple rank-1 lattices

▸ (reconstructing) rank-1 lattice:

- number of samples \(M \): \(|I| \leq M \leq |I|^2\), construction: \(O(d|I|^3) \), \(|I| \gtrsim N\)
- no additional dependence on spatial dimension \(d \) in \(M \)
- very easy and fast computation of Fourier coefficients (single 1-dim. FFT)

\[\Rightarrow \text{two lines of MATLAB code:} \]
\[
g_{\text{hat}} = \text{fft}(\text{samples})/M;
p_{\text{hat}} = g_{\text{hat}}(\text{mod}(I*z',M)+1);
\]

▸ improvements? Use more than one rank-1 lattice! (union of several)

\[\Rightarrow \text{multiple rank-1 lattice sampling} \ [\text{Kämmerer '16}] \ [\text{Kämmerer '17}], \]
complexities linear in \(d \), almost linear in sparsity \(|I|\) (for \(|I| \gtrsim N\)):

- samples: \(\leq C |I| \log^2 |I| \) (w.h.p.)
- construct lattice: \(\leq C |I| (d + \log |I|) \log^3 |I| \) (w.h.p.)
- reconstruction / approximation: \(\leq C |I| (d + \log |I|) \log^3 |I| \)
Multivariate trigonometric polynomials $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \approx f(x)$

Example — fast approximation

kink function $g_d : \mathbb{T}^d \rightarrow \mathbb{R}$,

$$g_d(x) = \prod_{s=1}^{d} \left(\frac{5^{3/4} 15}{4\sqrt{3}} \max \left\{ \frac{1}{5} - (x_s - \frac{1}{2})^2, 0 \right\} \right)$$

- error estimates for (multiple) rank-1 lattice sampling
 in [Byrenheid, Kämmerer, Ullrich, V. '17] [V. '17] [Kämmerer, V. '18]
Interlude

first part:

- fast reconstruction of arbitrary high-dimensional trigonometric polynomials
 \[f(x) = p_I(x) = \sum_{\mathbf{k} \in I} \hat{p}_\mathbf{k} e^{2\pi i \mathbf{k} \cdot x} \] using 1-dimensional FFTs

 spatial domain: general known frequency index set \(I \subset \mathbb{Z}^d \)

- fast approximation
 \[f(x) \approx \sum_{\mathbf{k} \in I} \hat{p}_\mathbf{k} e^{2\pi i \mathbf{k} \cdot x} \] of functions from samples

 \[\mathcal{O}(|I| (d + \log |I|) \log^3 |I|) \]

second part:

- unknown frequency index set \(I \) / weights / function space in high dimensions
 \[\Rightarrow \] dimension-incremental sparse FFT using multiple rank-1 lattices
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2 \pi i k \cdot x}$

$I \subset \Gamma = \hat{G}^3_8 := \{-8, -7, \ldots, 8\}$

$k_1 = -8, \ldots, 8$

$p_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\begin{pmatrix} \ell/17 \\ x_2' \\ x_3' \end{pmatrix}\right) e^{-2\pi i \frac{\ell k_1}{17}}$

frequency candidates

sampling nodes $\left\{\left(\frac{\ell}{17}, x_2', x_3'\right)\right\}_{\ell=0}^{16}$
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],
\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

\[\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p\left(\frac{\ell/17}{x_2', x_3'}\right) e^{-2\pi i \ell k_1/17} \]

\[k_1 = -8, \ldots, 8 \]

frequency candidates

sampling nodes \(\{\left(\frac{\ell}{17}, x_2', x_3'\right)\}_{\ell=0}^{16} \)
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],
\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p \left(\left(\frac{\ell/17}{x_2' \ x_3'} \right) \right) e^{-2\pi i \frac{\ell k_1}{17}} \]

\[k_1 = -8, \ldots, 8 \]

\[I \subset \Gamma = \mathcal{G}_8^3 := \{-8, -7, \ldots, 8\} \]

construct sampling set

frequency candidates
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],
\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p \left(\begin{pmatrix} \ell/17 \\ x_2' \\ x_3' \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \]

\(I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \)

\(k_1 = -8, \ldots, 8 \)

1-dim. FFT

Frequency candidates

Sampling nodes \(\{(\frac{\ell}{17}, x_2', x_3')\}_{\ell=0}^{16} \)
High-dimensional dimension-incremental sparse FFT

Method [Potts, V. ’15] [V. ’17] [Potts, Kämmerer, V. ’17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi ik \cdot x} \]

\[\hat{p}_k := \frac{1}{17} \sum_{\ell=0}^{16} p \left(\begin{pmatrix} \ell/17 \\ x'_2 \\ x'_3 \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \]

\[= \sum_{(h_2,h_3) \in \{-8,...,8\}^2} \hat{p} \begin{pmatrix} k_1 \\ h_2 \\ h_3 \end{pmatrix} e^{2\pi i (h_2 x'_2 + h_3 x'_3)}, \]

\[k_1 = -8,...,8 \]

\[I \subset \Gamma = \hat{G}^3_8 := \{-8,-7,...,8\} \]
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[\hat{p}_{k_1} := \frac{1}{17} \sum_{\ell=0}^{16} p \left(\begin{pmatrix} \ell/17 \\ x_2' \\ x_3' \end{pmatrix} \right) e^{-2\pi i \frac{\ell k_1}{17}} \]

\[= \sum_{(h_2,h_3) \in \{-8,\ldots,8\}^2} \hat{p} \left(\begin{pmatrix} k_1 \\ h_2 \\ h_3 \end{pmatrix} \right) e^{2\pi i (h_2 x_2' + h_3 x_3')}, \]

\[k_1 = -8, \ldots, 8 \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8,-7,\ldots,8\} \]

\[1 \text{-dim. FFT} \]

detected frequencies \(I^{(1)} \)

\[+ \text{ repeat (} r \text{ detection iterations)} \]

sampling nodes \(\left\{ \left(\frac{\ell}{17}, x_2', x_3' \right) \right\}_{\ell=0}^{16} \)
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],
\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

Detected frequencies
\[I^{(1)} \]

Frequency candidates
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \)

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies

construct sampling set

frequency candidates

sampling nodes
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

frequency candidates

detected frequencies $I^{(1)}$

1-dim. FFT

sampling nodes
High-dimensional dimension-incremental sparse FFT

Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

1-dim. \leftarrow FFT

detected frequencies $I^{(1)}$

sampling nodes

detected frequencies $I^{(2)}$
High-dimensional dimension-incremental sparse FFT Method [Potts, V. ’15] [V. ’17] [Potts, Kämmerer, V. ’17], \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi ik \cdot x} \)

\[
I \subset \Gamma = \hat{G}_{8}^3 := \{-8, -7, \ldots, 8\}
\]

\[
\text{detected frequencies } I^{(1)}
\]

\[
\text{detected frequencies } I^{(2)}
\]

\[
+ \text{ repeat } (r \text{ detection iterations})
\]
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \)

\[
I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}
\]

detected frequencies \(I^{(1)} \)

detected frequencies \(I^{(2)} \)

frequency candidates \(I^{(1)} \times I^{(2)} \)
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

detected frequencies $I^{(1)}$

detected frequencies $I^{(2)}$

frequency candidates $I^{(1)} \times I^{(2)}$
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \)

\[
I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}
\]

detected frequencies

\(I^{(1)} \)

\(I^{(2)} \)

reconstructing multiple rank-1 lattice

frequency candidates \(I^{(1)} \times I^{(2)} \)

sampling nodes
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$\mathcal{I} \subset \Gamma = \hat{G}_8^3 \equiv \{-8,-7,\ldots,8\}$

detected frequencies $\mathcal{I}^{(1)}$

detected frequencies $\mathcal{I}^{(2)}$

frequency candidates $\mathcal{I}^{(1)} \times \mathcal{I}^{(2)}$
High-dimensional dimension-incremental sparse FFT

Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

detected frequencies $I^{(1)}$

detected frequencies $I^{(2)}$

1-dim. \leftarrow FFTs

detected frequencies $I^{(1,2)}$
High-dimensional dimension-incremental sparse FFT

Method [Potts, V. ’15] [V. ’17] [Potts, Kämmerer, V. ’17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies \(I^{(1)} \)

detected frequencies \(I^{(2)} \)

+ repeat \((r\) detection iterations\)

sampling nodes
High-dimensional dimension-incremental sparse FFT Method [Potts, V. ’15] [V. ’17] [Potts, Kämmerer, V. ’17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

- detected frequencies $I^{(1)}$
- detected frequencies $I^{(2)}$

$+ \text{ repeat (r detection iterations)}$
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],
\[p_I(x) = \sum_{\mathbf{k} \in I} \hat{p}_k e^{2\pi i \mathbf{k} \cdot \mathbf{x}} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies \(I^{(1,2)} \)

frequency candidates
sampling nodes
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], \(p_I(x) = \sum_{\mathbf{k} \in I} \hat{p}_k e^{2\pi i \mathbf{k} \cdot x} \)

\[I \subset \Gamma = \hat{G}_8^3 := \{ -8, -7, \ldots, 8 \} \]

detected frequencies \(I^{(1,2)} \)

frequency candidates

sampling nodes
High-dimensional dimension-incremental sparse FFT Method \cite{Potts:2015a, Potts:2017a, Potts2017a, Kammerer2017a}

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\(I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \)

\(I^{(1,2)} \) detected frequencies

\(\rightarrow \) construct sampling set

\(\rightarrow \) sampling nodes

frequency candidates
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],
\[p_I(x) = \sum_{k \in I} \hat{p}_k \ e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies \(I^{(1,2)} \)

frequency candidates

1-dim. ← FFT

sampling nodes

Toni Volkmer 12 / 16 https://www.tu-chemnitz.de/~tovo/
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}^3_8 := \{-8, -7, \ldots, 8\}$

detected frequencies $I^{(1,2)}$

detected frequencies $I^{(3)}$

1-dim. FFT
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

\hat{G}_8^3 detected frequencies $I^{(1,2)}$

\hat{G}_8^3 detected frequencies $I^{(3)}$

$+ \text{ repeat } (r \text{ detection iterations})$

1-dim. FFT

sampling nodes
High-dimensional dimension-incremental sparse FFT

Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],

\[p_I(x) = \sum_{k \in \hat{I}} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies \(I^{(1,2)} \)

frequency candidates \(I^{(1,2)} \times I^{(3)} \)

dsampling nodes
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. ’15] [V. ’17] [Potts, Kämmerer, V. ’17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

\[I^{(1,2)} \times I^{(3)} \]

\[\text{detected frequencies } I^{(1,2)} \]

\[\text{frequency candidates } I^{(1,2)} \times I^{(3)} \]

\[\text{sampling nodes} \]

Toni Volkmer 13 / 16 https://www.tu-chemnitz.de/~tovo/
High-dimensional dimension-incremental sparse FFT

Method [Potts, V. ’15] [V. ’17] [Potts, Kämmerer, V. ’17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies \(I^{(1,2)} \)

frequency candidates \(I^{(1,2)} \times I^{(3)} \)

reconstructing multiple rank-1 lattice

sampling nodes
High-dimensional dimension-incremental sparse FFT
Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

detected frequencies $I^{(1,2)}$

frequency candidates $I^{(1,2)} \times I^{(3)}$

1-dim. FFTs

sampling nodes
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17],

\[p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \]

\[I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\} \]

detected frequencies \(I^{(1,2)} \)

\[I^{(1,2,3)} = I \]

1-dim. FFTs

sampling nodes
High-dimensional dimension-incremental sparse FFT Method [Potts, V. '15] [V. '17] [Potts, Kämmerer, V. '17], $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$

$I \subset \Gamma = \hat{G}_8^3 := \{-8, -7, \ldots, 8\}$

detected frequencies $I^{(1,2)}$

1-dim. \leftrightarrow FFTs

detected frequencies $I^{(1,2,3)} = I$

sampling nodes
reconstruction of \(p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x} \) with unknown \(I \)

using multiple rank-1 lattices:

\begin{itemize}
 \item sparsity \(s = |I| \), search domain \(\Gamma = \hat{G}_N^d := \{-N, \ldots, N\}^d \supset I \),
 \end{itemize}

\begin{table}
\begin{tabular}{l|c|c}
 & theory & in practice \\
 \hline
 samples & \(\leq C d s^2 N \log^3(sN) \) (w.h.p.) & \(\leq C d sN \log^2(sN) \) \\
 arithmetic op. & \(\leq C d^2 s^2 N \log^5(sN) \) (w.h.p.) & \(\leq C d^2 sN \log^4(sN) \)
\end{tabular}
\end{table}

\begin{itemize}
 \item MATLAB implementation
 \item numerically tested for up to 30 spatial dimensions
\end{itemize}
reconstruction of $p_I(x) = \sum_{k \in I} \hat{p}_k e^{2\pi i k \cdot x}$ with unknown I

using multiple rank-1 lattices:

- sparsity $s = |I|$, search domain $\Gamma = \hat{G}_N^d := \{-N, \ldots, N\}^d \supset I$,

<table>
<thead>
<tr>
<th></th>
<th>theory</th>
<th>in practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>samples</td>
<td>$\leq C d s^2 N \log^3(sN)$ (w.h.p.)</td>
<td>$\leq C d sN \log^2(sN)$</td>
</tr>
<tr>
<td>arithmetic op.</td>
<td>$\leq C d^2 s^2 N \log^5(sN)$ (w.h.p.)</td>
<td>$\leq C d^2 sN \log^4(sN)$</td>
</tr>
</tbody>
</table>

- MATLAB implementation
- numerically tested for up to 30 spatial dimensions
High-dimensional dimension-incremental sparse FFT
Example — 10-dimensional test function

- approximate reconstruction of a function \(f \in L_2(\mathbb{T}^d) \cap C(\mathbb{T}^d) \)
- \(f(x) := \prod_{t \in \{1, 3, 8\}} B_2(x_t) + \prod_{t \in \{2, 5, 6, 10\}} B_4(x_t) + \prod_{t \in \{4, 7, 9\}} B_6(x_t), \)
 \(B_m(x) = \sum_{k \in \mathbb{Z}} C_m \text{sinc} \left(\frac{\pi m k}{m} \right) (-1)^k e^{2\pi i k x} \)
 univariate B-spline of order \(m \in \mathbb{N} \)
- dimension-incremental sparse FFT for \(\Gamma = \hat{G}_{64}^{10} \) (\(|\hat{G}_{64}^{10}| \approx 1.28 \cdot 10^{21} \)):
Conclusion

- known frequency index set \(I \subset \mathbb{Z}^d \), multiple rank-1 lattice
 - fast reconstruction of high-dim. trigonometric polynomials \(p_I \)
 [Kämmerer '16] [Kämmerer '17]
 - fast approximation (error estimates for Sobolev-Hilbert type spaces)
 [Kämmerer, Potts, V. '15] [Byrenheid, Kämmerer, Ullrich, V. '17] [V. '17] [Kämmerer, V. '18]

- unknown \(I \subset \mathbb{Z}^d \), sampling along (multiple) rank-1 lattices
 - high-dimensional dimension-incremental sparse FFT
 [Potts, V. '16] [V. '17] [Kämmerer, V. '17]
 - very good numerical results
 for high-dimensional sparse trigonometric polynomials and
 for high-dimensional functions (non-sparse in frequency domain)
 - can be transferred to non-periodic case (tensor product Chebyshev bases)

- see also

T. V. Multivariate Approximation and High-Dimensional Sparse FFT Based on Rank-1 Lattice Sampling. Dissertation (PhD thesis), Faculty of Mathematics, Chemnitz University of Technology, 2017.

Software: MATLAB toolboxes (for single rank-1 lattices) https://www.tu-chemnitz.de/~tovo