Implementation of Sparse FFT with Structured
Sparsity

Sina Bittens®, Mark Iwen?, Ruochuan Zhang?

LUniversity of Gottingen, Institute for Numerical and Applied Mathematics

2Michigan State University, Dept. of Mathematics, and Dept. of CMSE

CSE19
Spokane, Washington
March 1, 2019

inv

C_ J Georg-August-Universitét 2%?8
] Gottingen

e stat



N
Motivation

@ General m-sparse FFT algorithms do not use additional a priori known
information about the signal structure:

o Iwen (2010, deterministic): O (m2 log* N)
o lwen (2013, randomized w.h.p.): O (mlog4 N),

o Plonka, Wannenwetsch, Cuyt, Lee (2018): O (m?log N).

o FFT algorithms for signals with short support of length m cannot be
generalized to two or more support intervals:

o Plonka, Wannenwetsch (2016, 2017): O (mlog N), O (mlog mlog &),
e Bittens (2017): O (mlog mlog? %)
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e FFT algorithms for signals with short support of length m cannot be
generalized to two or more support intervals:

o Plonka, Wannenwetsch (2016, 2017): O (mlog N), O (mlog mlog &),
e Bittens (2017): O (mlog mlog? ﬂ).

m

Aim: Find a deterministic FFT algorithm for 27-periodic frequency sparse
functions with more general structures:

o Multiple B-length blocks of frequencies,

@ Frequencies generated by evaluating n polynomials of degree d at B
points.
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Preliminaries

Block Sparse Functions

Consider 27r-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B,

{wj,wj+1,...,wj+B—1}C{— {%] —i—l,...,[%J}.
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Block Sparse Functions

Consider 27r-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B,

{wj,wj—i-l,...,wj—i-B—l}C{— {%]+1,,L%J}

f is block sparse and of the form

f:10,27r] = C, f(x)=

I|M:

i +ke|(wj+k)x

with finite Fourier transform ¢ = (cw)we{_[g]ﬂ 18]}
2
Energetic Frequency: w with ¢, # 0.
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Preliminaries

Block Sparse Functions

Consider 27r-periodic f with bandwidth N and energetic frequencies
contained in n blocks of length B,

{wj,wj—i-l,...,wj—i-B—l}C{— {%]—1—1,,[%“

f is block sparse and of the form

f:10,27r] = C, f(x)=

I|M:

i +ke|(wj+k)x

with finite Fourier transform ¢ = (Cw)we{—(ﬂ]ﬂ 18]}
2

Energetic Frequency: w with ¢, # 0.

Example (n =2, B =3)

T
c=1(0,...,0,Cu, Coyt1y Cry+2,0, ..., 0, Cuyy Curt 1y Curyt2,0, ..., 0) J
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Preliminaries

Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

(A())Mo' € CM. Define A = (Z(w)) 2]

=[]

Alw) = ; L A),

Let A =

€ CM by

Runtime of the fast DFT: O(M log M).
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Discrete Fourier Transform (DFT)

Definition (Discrete Fourier Transform)

Let A — (A(j))M 1« CM. Define A = (Z(w)) LE{[M]H

—27ruw

Aw) = ; AG).

€ CM py

Runtime of the fast DFT: O(M log M).

Definition (Vector of Equidistant Samples)
For f: [0,27] — C and M € N define

Au = (Au()" = (£ (%))
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Main Idea - Decomposition

a1 ()

e n frequency blocks of length B = K,\V is nB-sparse,
n
— ¢ fwe J{w,wj+1,...,wj+ B -1},
An(w) = j=1
0 otherwise.
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Main Idea - Decomposition

=)
N — N =0 .
e n frequency blocks of length B = K,\V is nB-sparse,

n
— ¢ fwe J{w,wj+1,...,wj+ B -1},
An(w) = j=1

0 otherwise.

General sparse FFT algorithms only efficient for very sparse functions.

Approach: Decompose input function into sparser functions and apply
sparse FFT algorithm to all of them.
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Restriction to the Frequencies Congruent to v

Definition (Restriction)
Let f be block sparse with n blocks of length B, u > B, v € {0,...,u—1}.

Z;(w) . Z;l(w) if w=v mod u,
N "o otherwise.
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Restriction to the Frequencies Congruent to v

Definition (Restriction)
Let f be block sparse with n blocks of length B, u > B, v € {0,...,u—1}.

A;( ) /Z;/(w) if w=v mod u,
w) =
N 0 otherwise.

e Aj: restriction of Ay to frequencies w = v mod u.
@ AJ is at most n-sparse.

e Applying sparse FFT to '&?v is fast.

@ Restriction to residues agrees well with GFFT.
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Block Sparse Case

Let f be 1-block sparse.
e f has frequency support S = {wy,w1 +1,...,w; + B—1}.

@ Choose u > B. Then [{w=v mod u:w € S}| <1 for all
v=0,...,u—1.

@ There is at most one energetic frequency congruent to v modulo v for
each residue v.
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@ Choose u > B. Then [{w=v mod u:w € S}| <1 for all
v=0,...,u—1.
@ There is at most one energetic frequency congruent to v modulo u for
each residue v.

Let f be n-block sparse.

n
e f has frequency support S = J {wj,wj +1,...,wj+ B —1}.
j=1
@ Choose u > B. Then [{w=v mod u:w € S}| < n for all
v=0,...,u—1.

@ There are at most n energetic frequencies congruent to v modulo u
for each residue v.
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Example: N =15, n=2, B = u = 3 (*: nonzero entries)

>
2
Il
O % % ¥ OO OO O % % ¥ O OO

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 7/ 15



Example: N =15, n=2, B = u = 3 (*: nonzero entries)

>
2
Il
O % % ¥ OO OO O % % ¥ O OO
>
o
|
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Example: N =15, n=2, B = u = 3 (*: nonzero entries)

0 0 0 0
0 0 0 0
0 0 0 0
* * 0 0
* 0 * 0
* 0 0 *
0 . 0 - 0 . 0
Av=|0|l > A =1lo|, A =]ol|, A =]o0
0 w=0 mod 3 0 w=1 mod 3 0 w=2 mod 3 0
0 0 0 0
0 0 0 0
* 0 0 *
* * 0 0
* 0 * 0
0 0 0 0
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SFFT Algorithm for Block Sparse Functions (FAST) |

@ Choose u > B as a power of 2.
@ Apply sparse FFT algorithm to all u at most n-sparse restrictions Af,.
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SFFT Algorithm for Block Sparse Functions (FAST) |

@ Choose u > B as a power of 2.

o Apply sparse FFT algorithm to all u at most n-sparse restrictions 5«,;\,

@ Use the residue v modulo u for the sparse FFT frequency
reconstruction as well.

@ Required samples using GFFT:

Asitju = (f <ﬂ)>5mu—1 for all k and /

Sktiu .

o t: odd primes s.t. X <]/, ¢
@ s, primes s.t. all w = v mod u can be uniquely recovered from

mod s, t1, ..., t; for more than K /2 si.
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SFFT Algorithm for Block Sparse Functions (FAST) |

@ Choose u > B as a power of 2.
@ Apply sparse FFT algorithm to all u at most n-sparse restrictions Af,.

@ Use the residue v modulo u for the sparse FFT frequency
reconstruction as well.

@ Required samples using GFFT:
, tiu—1
As tu = (f <ﬂ)>5k N for all k and /

Sktiu .

o t;: odd primes s.t. 1L < T t

0 S
@ s, primes s.t. all w = v mod u can be uniquely recovered from
mod s, t1, ..., t; for more than K /2 si.

@ Every energetic frequency found for exactly one residue v modulo u.
@ Accurate coefficient estimates guaranteed.
@ Choose the nB most energetic returned frequencies.
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SFFT Algorithm for Block Sparse Functions (FAST) Il

Input: Sparse function f with n blocks of length B and bandwidth N.
1oy = 2legBl+l ¢t~ ... < ¢ minimal, prime s.t. % < H,L:1 ty,
s1 > max(n, t;), K = 2nllogg, %j +1, 51 < -+ < sk minimal, prime.

2. fork=1,...,K,1=0,...,L do
3: ComputeA/s,;:DFT (f<27rj>>

sktiu

sktiu—1

j=0
4: end for
5. forv =0,...,u—1do -
6: Apply n-sparse GFFT to A, to obtain
S” = {wy,...,wy} and coefficient estimates x,v, ..., x,z.
7: end for
Output: Choose the nB frequencies from Uﬂ;é 5% with largest magnitude
coefficient estimates.

Implementations available in Matlab and C++.
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Input: Sparse function f with n blocks of length B and bandwidth N.
1oy = 2legBl+l ¢t~ ... < ¢ minimal, prime s.t. % < H,L:1 ty,
s1 > max(n, t;), K = 2nllogg, %j +1, 51 < -+ < sk minimal, prime.

2 fork=1,...,K,1=0,...,L do
3: ComputeA/-sk;: DFT (f(zwj ))

sktiu

sptju—1

j=0
4: end for
5. forv =0,...,u—1do -
6: Apply n-sparse GFFT to A, to obtain
S¥ = {wy,...,wy} and coefficient estimates x,v, ..., X,z
7: end for
Output: Choose the nB frequencies from Uﬂ;é 5% with largest magnitude
coefficient estimates.

Implementations available in Matlab and C++.
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SFFT Algorithm for Block Sparse Functions

Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let f € L2([0,2n]) be block sparse with n blocks of length B. The FAST
algorithm returns an nB-sparse vector x € CN of accurate Fourier
coefficient estimates with runtime

O (B-n2~|og B log* N)

log? n

and sampling complexity

O (B-n2~|og4 N) _

log? n
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Runtime and Sampling Complexity

Theorem (B., Iwen, Zhang, 2018)

Let f € L2([0,2n]) be block sparse with n blocks of length B. The FAST
algorithm returns an nB-sparse vector x € CN of accurate Fourier
coefficient estimates with runtime

O (B~n2~|og B log* N)

log? n

and sampling complexity

O (B-n2~|og4 N) _

log? n

GFFT for nB-sparse functions:
runtime: O (@M); required Samples: O <(nB)2 log® N>.

log=(nB) logZ(nB)
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Numerical Experiments

Runtime - Varying the Block Length

102
v
101 — v
v -0
———o— _¢L<>—ﬁ,———ﬂ’—<~
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£ v -
B v -
€ 107! > A
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102 —v - FAST ]
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' -E sFFT20
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1073 : ,

4 8 16 32 64 128 256 512 1024 2048
Block Length B

Runtimes of deterministic FFT algorithms for N = 226 and n = 3 blocks.

Sina Bittens Implementation of Sparse FFT with Structured Sparsity 11 /15



Numerical Experiments

Runtime - Varying the Bandwidth

102
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100
M,
£ —-—-
E 10-1 — " /‘
g \ /
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1072 4 =BT 2 GFFT 1
& v —v - FAST
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FAST (rand.)
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Bandwidth N

Runtimes of deterministic FFT algorithms for n = 2 blocks of length B = 64.
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Numerical Experiments

Robustness to Noise

10° ‘
GFFT
. —v - FAST
1077 B —o— FFTW .
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Reconstruction errors of deterministic FFT algorithms for N = 222 and n = 3
blocks of length B = 2*.
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Further Results

Generalization of the Technique |
Can more general structures guarantee similar sparsities?

@ Block {wj,w;j+1,...,w; + B — 1} generated by evaluating
Pi(x) =x+wjat0,1,...,B—1
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Further Results

Generalization of the Technique |

Can more general structures guarantee similar sparsities?

@ Block {wj,w;j+1,...,w; + B — 1} generated by evaluating
Pi(x) =x+wjat0,1,...,B—1

o Generate energetic frequencies by evaluating n polynomials of degree
d at B points.

o Are the restrictions A}, to the frequencies congruent to v modulo
u > B at most nd-sparse?

Problems:

e Aj is at most nd-sparse for v mod u if and only if none of the
generating polynomials is constant modulo u.

@ Knowledge about the polynomial coefficients is hard to obtain.
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Further Results

Generalization of the Technique Il

@ Choose primes uy, ..., upy s.t. for more than half of them all
restrictions are at most nd-sparse.

@ Guaranteed by Chinese Remainder Theorem; related idea used in
GFFT.

@ Employ median arguments to find correct frequencies and coefficient
estimates.
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Further Results

Generalization of the Technique Il

@ Choose primes uy, ..., upy s.t. for more than half of them all
restrictions are at most nd-sparse.

@ Guaranteed by Chinese Remainder Theorem; related idea used in
GFFT.

@ Employ median arguments to find correct frequencies and coefficient
estimates.

@ Accurate coefficient estimates guaranteed.

. tium—1
o Required samples: A, = (f <Zﬂ>)k """ for all k, 1 and m.

sktiu .

. . Bd?n?log® N
@ Runtime: O (—Iogz(dn) )

. o Bd?n3log® N
e Sampling complexity: O (IogBIogz(dn)

o Generalized technique efficient if B > d?nlog N.
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Main Idea of GFFT

Recovers the most energetic frequencies and accurate estimates for their
Fourier coefficients of an m-sparse 2m-periodic function.

o Find smallest primes t;,...,t; and s1,...,sKx > m s.t. unique
recovery of the frequencies from their residues modulo sk, t1,...,t; is
possible by the Chinese Remainder Theorem for all 1 < k < K.
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recovery of the frequencies from their residues modulo sk, t1,...,t; is
possible by the Chinese Remainder Theorem for all 1 < k < K.

@ Residues found by considering entries of Ksk\t, for all /.

o Fourier coefficients found accurately from A, ¢ (w mod sit;) = c,.
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Main Idea of GFFT

Recovers the most energetic frequencies and accurate estimates for their
Fourier coefficients of an m-sparse 2m-periodic function.
o Find smallest primes t;,...,t; and s1,...,sKx > m s.t. unique
recovery of the frequencies from their residues modulo sk, t1,...,t; is
possible by the Chinese Remainder Theorem for all 1 < k < K.

@ Residues found by considering entries of ATSZL, for all /.

o Fourier coefficients found accurately from A, ¢ (w mod sit;) = c,.

. i set—1
o Required samples: A, = <f (%)) . for all k and /.
J:

. . 2 6
@ Runtime for m-sparse functions: O <%).

Sampling complexity for m-sparse functions: O ("’2'07“)

log® m
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GFFT Algorithm for Sparse Functions

Input: B-sparse function f with bandwidth N.
1: t; < -+ < t; minimal, prime s.t. % < H/L:1 t;, s1 > max(B,t),
K =2Bllog,, N] +1, 51 < --- < sk minimal, prime.

2. fork=1,...,K,/=0,...,Ldo
— . t—1
3 Compute A, = DFT (f (ﬂ))k -

Skt j=0
4: for k=1,...,K do
for every residue h mod sx do -
Find residues modulo t1,...,t; of w=h mod s; from Ag,¢,.
Reconstruct w from its residues.
. for each w found more than K/2 times do

cw<—median{A/s;,(w mod skt/):k=1,...,K,I=1,...,L}

© ® N G

Output: The B frequencies with largest magnitude coefficient estimates.
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