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Compressive Sensing Overview

Compressive Sensing [Candès, Donoho, Tao, . . . ]

The General Compressive Sensing Framework
Recover x ∈ H from an underdetermined
set of linear measurements. . .
by assuming that it is close to a geometrically
simple subsetM⊂ H.

Some Fundamental Questions: Which linear
measurements (for which H andM)? What
computationally tractable numerical methods exist (for which H &M)?

H = RN ,M =
{

y ∈ RN
∣∣ ‖y‖0 ≤ s

}
, s � N

H = RN ,M⊂ RN has small Gaussian width, or is a smooth low
dimensional submanifold of RN with bounded reach, . . .
H = RN×N ,M =

{
X ∈ RN×N

∣∣ rank(X ) = s
}

, s � N

TODAY: H = L2 ([0,2π]D,C
)
,M =

{
f ∈ H

∣∣ ∥∥f̂
∥∥

0 ≤ s
}

, s � ωmax
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Compressive Sensing Overview

Where Do Fourier Sparse Signals Appear?
Motivated by
Applications involving wideband signals that are locally frequency
sparse in time [see work by Baranuik, Duarte, Hassanie, Tropp, ...].

Frequency hopping modulation schemes [Lamarr et al., 1941], and
wideband spectrum sensing [Hassanie et al., 2014]
Faster GPS [Hassanieh et. al., 2012]
Spectral methods for multiscale problems [Daubechies et al., 2007]
MR Imaging of implicitly sparse specimens [Andronesi et al., 2014]
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Compressive Sensing Overview

Notation and Setup

Approximate f : [0,2π] 7→ C by a Sparse Trig. Polynomial

f (x) ≈
s∑

j=1

f̂ (ωj) · eixωj ∈M, Ω := {ω1, . . . , ωs} ⊂
(
−N

2
,
N
2

]⋂
Z

In discrete setting we let f : [0,2π] 7→ C be the continuous degree
N
2 trigonometric polynomial interpolant of the given data f ∈ CN .

We compute point samples, y ∈ Cm, with yj = f (xj) + nj for well
chosen unequally spaced x1, . . . , xm ∈ [0,2π].

The additive evaluation errors, nj , form the entries of n ∈ Cm.

f̂ ∈ CN contains nonzero entries of f̂ for freqs ∈
(
−N

2 ,
N
2

]⋂
Z.

f̂ opt
s ∈ CN , a best s-term approx. to f̂ = FN f ∈ CN (the DFT of f).
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Compressive Sensing Overview

Theorem: A Discrete Result [I., S. Merhi, R. Zhang, 2017]

Let N ∈ N, s ∈ [2,N] ∩ N, 1 ≤ r ≤ N
36 , and f ∈ CN . There exists an

algorithm that will always deterministically return an s-sparse vector
v ∈ CN satisfying∥∥∥̂f− v

∥∥∥
2
≤
∥∥∥̂f− f̂opt

s

∥∥∥
2

+
33√

s
·
∥∥∥̂f− f̂opt

s

∥∥∥
1

+ 198
√

s ‖f‖∞N−r (1)

in just O
(

s2·r
3
2 ·log

11
2 (N)

log(s)

)
-time when given access to f. If returning an

s-sparse vector v ∈ CN that satisfies (1) for each f with probability at
least (1− δ) ∈ [2/3,1) is sufficient, a Monte Carlo algorithm also exists
which will do so in just O

(
s · r

3
2 · log

9
2 (N) · log

(N
δ

))
-time.

• Proof Idea: Convolve the trig. polynomial interpolant of f with a well
chosen periodic Gaussian, and then apply A from the previous
theorems for inf. dim. setting [I., 2013] to the resulting function g.
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Compressive Sensing Overview

Publicly Available Codes: Fixed N = 226
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https://sourceforge.net/projects/aafftannarborfa/
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Compressive Sensing Overview

Basic Idea of [I., 2013] in the case ‖FNf‖0 = 1

• Example: B ∈ {0,1}5×6, F6f ∈ C6 contains 1 nonzero entry.
Consider BF6f :

≡ 0 mod 2
≡ 1 mod 2
≡ 0 mod 3
≡ 1 mod 3
≡ 2 mod 3


1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





0
0

3.5
0
0
0


• Reconstruct entry index via Chinese Remainder Theorem
• Two estimates of the entry’s value

SAVED ONE INNER PRODUCT!
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Compressive Sensing Overview

Basic Idea of [I., 2013] in the case ‖FNf‖0 = 1


1 0 1 0 1 0
0 1 0 1 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1





0
0

3.5
0
0
0

 =


3.5
0
0
0

3.5



We only utilize 4 entries from f ∈ C6

Computed Efficiently using 2 FFTs
Reconstruct frequency index via Chinese Remainder Theorem
Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!
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Compressive Sensing Overview
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Part II: Extensions to Other Bases, and to Higher Dimensions Part II.1 – Motivation for Extensions to Other Bases

Extensions: Compressed Sensing for Parametric PDE

Setup: Given PDE A(x)u = g, x ∈ [0,2π]D parameters,
approximate Quantity of Interest (QoI) f (x) = Gu(x) (real valued)
as a function of x.
Core observation: QoI f (x) is approximately sparse in
appropriate (truncated) product basis T

f (x) ≈
∑
n∈Ω

cnTn(x)

that is, each n ∈ ID := {0, . . . ,N − 1}D, indexes a basis function
Tn and for n ∈ Ω ⊂ ID with s = |Ω| small, cn ∈ C is the coefficient.
More concretely, we consider basis functions, indexed by n ∈ ID,
of the form

Tn(x) =
D∏

j=1

Tj;nj (xj)

where each Tj;nj is a 1-dim basis function (e.g., Tj;nj (x) := einj x ,
orthogonal polynomials, . . . ).
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Part II: Extensions to Other Bases, and to Higher Dimensions Part II.1 – Motivation for Extensions to Other Bases

Extensions: Compressed Sensing for Parametric PDE
Recall our goal: Approximate f : [0,2π]D → R sparse in {Tn}.
Samples: Each PDE solve yields ≈ f (xj) for some fixed set of
parameters xj (of our choosing).
In matrix form: Recover s-sparse c from

f =


f (x1)
f (x2)

...
f (xm)

 =


Tn1(x1) Tn2(x1) · · · · · · TnND (x1)

Tn1(x2) Tn2(x2) · · · · · · TnND (x2)
...

...
. . .

...
Tn1(xm) Tn2(xm) · · · · · · TnND (xm)

c

=: Φc

Strategy [Rauhut, Schwab, Adcock, Webster, ...]: Ensure, e.g.,
that Φ ∈ Rm×ND

has the Restricted Isometry Property (RIP) s.t.

max
S⊂ID ,|S|≤s

‖Φ∗SΦS − Id‖2→2

is small. Then, appeal to compressive sensing recovery methods.
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Part II: Extensions to Other Bases, and to Higher Dimensions Part II.1 – Motivation for Extensions to Other Bases

Motivation: Compressed Sensing for Parametric PDEs

Strategy [Rauhut, Schwab, Adcock, Webster, ...]:
I Compute f (xj ) for x1, x2, . . . , xm (random?)

Computational cost: m × (cost of PDE solve).

I Recover the c ∈ CND
using `1 minimization, OMP, CoSaMP, ...

Computational cost: poly(ND) – or poly((log(N))D) using, e.g.,
hyperbolic cross assumptions to constrain the overall basis size.

Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]:

Recovery guarantees if m & s polylog(ND, s).

The Goal: Approximate f : [0,2π]D 7→ C using as few evaluations as
possible, as quickly as possible... in O (Dc . . . )-time.

Challenge: Can we mitigate curse of dimensionality in last step?
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Part II: Extensions to Other Bases, and to Higher Dimensions Part II.2 – Extensions BON Product Bases to High Dimensions

CoSaMP [Needell, Tropp] for General Product Bases

(Recall: f = Φc, f ∈ Cm, Φ ∈ Cm×ND
, c ∈ CND

s-sparse)

Algorithm 1 CoSaMP(Φ, f, s) recovery algorithm
1: c0 = 0 {Trivial intitial approximation}
2: v← f {Current samples=input samples}
3: k ← 0
4: repeat
5: k ← k + 1
6: w← Φ∗v {Form signal proxy}
7: S ← supp(w2s) {Identify large components}
8: T ← S ∪ supp(ck−1) {merge supports}
9: aT ← Φ†T f {Signal estimation by least-squares}

10: ck ← a opt
s {Prune to obtain next approximation}

11: v← f− Φck {Update current samples}
12: until halting criterion true

M.A. Iwen (MSU) Sparse Fourier Transforms March 1st, 2019 13 / 15



Part II: Extensions to Other Bases, and to Higher Dimensions Part II.2 – Extensions BON Product Bases to High Dimensions

Numerics: Fourier Basis
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Figure: Fourier basis, N = 20, D ∈ {5,10,15,20, · · · ,75}, s = 5.
Reconstruction errors in `2 ∼ 10−15.

Standard compressive sensing methods would require more bytes
of memory than there are atoms in the universe in order to store
their intermediate solutions when D = 75. . .
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Conclusion

Thank You! Some other great talks coming up. . .

Sina Bittens: Faster sparse FFTs for functions with structured
support. For example, frequencies confined to a few (a priori
unknown) bands.

Toni Volkmer, and Bosu Choi: More on (Sparse) Fourier
transforms in high dimensions!

Post Doc Position Available!
Email if interested (markiwen@math.msu.edu)
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