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Work with RuoChuan Zhang & Sami Merhi ...

Figure: RuoChuan Zhang (Now @ Research Division of Delphi Automotive),
and Sami Merhi (Expected Graduation in Summer 2019)
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Compressive Sensing Overview

Compressive Sensing [Candeés, Donoho, Tao, ...]

The General Compressive Sensing Framework

Recover x € H from an underdetermined

set of linear measurements. . .

by assuming that it is close to a geometrically
simple subset M C H.

Some Fundamental Questions: Which linear
measurements (for which + and M)? What
computationally tractable numerical methods exist (for which H & M)?

v

o H=RN M={yeRN||ylo<s},s<N

@ H =RN, M c RN has small Gaussian width, or is a smooth low
dimensional submanifold of RN with bounded reach, ...

o H=RVN M={XecRVN | rank(X) = s}, s < N

o TODAY: # = L2 (0,212, ©), M = {f e # | |[Fl|, < s}, 5 < wman
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Where Do Fourier Sparse Signals Appear?
Motivated by

Applications involving wideband signals that are locally frequency
sparse in time [see work by Baranuik, Duarte, Hassanie, Tropp, ...].

@ Frequency hopping modulation schemes [Lamarr et al., 1941], and
wideband spectrum sensing [Hassanie et al., 2014]

@ Faster GPS [Hassanieh et. al., 2012]

@ Spectral methods for multiscale problems [Daubechies et al., 2007]

@ MR Imaging of implicitly sparse specimens [Andronesi et al., 2014]
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Compressive Sensing Overview

Notation and Setup

Approximate f : [0,27] — C by a Sparse Trig. Polynomial

E - N N
f(x) ~ ];:f(wj)-e“x‘“/ eM, Q:={wi,...,ws} C (_E’E} N z

@ In discrete setting we let f : [0, 27] — C be the continuous degree
% trigonometric polynomial interpolant of the given data f ¢ CV.

@ We compute point samples, y € C™, with y; = f(x;) + n; for well
chosen unequally spaced x, ..., xn € [0, 27].

@ The additive evaluation errors, n;, form the entries of n € C™.
2 . . % N N
e f e CN contains nonzero entries of f for freqs € (-5, 5| N Z.

o £ P e €N, a best s-term approx. to f = Faf € CV (the DFT of f).
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Theorem: A Discrete Result [I., S. Merhi, R. Zhang, 2017]

LetNeN,se[2,NJNN,1<r < & andfe CN. There exists an
algorithm that will always deterministically return an s-sparse vector
v € CN satisfying

Hf—vHZSHf—ngt +198VS |l N (1)

+2 -,

log(s)
s-sparse vector v € CN that satisfies (1) for each f with probability at
least (1 —¢) € [2/3,1) is sufficient, a Monte Carlo algorithm also exists

which will do so in just O (s- rz -log?(N) - log (%))-time.

3 1
in just O (32’2'092('\’)> -time when given access to f. If returning an

¢ Proof Idea: Convolve the trig. polynomial interpolant of f with a well
chosen periodic Gaussian, and then apply A from the previous
theorems for inf. dim. setting [I., 2013] to the resulting function g.
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Compressive Sensing Overview

Publicly Available Codes: Fixed N = 22¢

Bandwidth = 226
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@ https://sourceforge.net/projects/aafftannarborfa/
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

o Example: B € {0,1}°%6, Fgf € ©° contains 1 nonzero entry.
Consider BFgf :
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Basic ldea of [l., 2013] in the case || Fnf|lo = 1

o Example: B € {0,1}°%6, Fgf € ©° contains 1 nonzero entry.

Consider BFgf :

M.A. lwen (MSU)

101 0 1
01010
10010
01001
00100

Sparse Fourier Transforms

- OO0 —=+0

0
0
3.5
0
0
0

March 1%, 2019

8/15



Basic ldea of [l., 2013] in the case || Fnf|lo = 1

o Example: B € {0,11°%6, F¢f ¢ C® contains 1 nonzero entry.
Consider BFgf :

101010 8 35 < Index = 0 mod 2
01010 1 35 0
100100 O = 0
010010 0 0
001 O0O0 1 0 3.5 < Index =2 mod3
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

o Example: B € {0,11°%6, F¢f ¢ C® contains 1 nonzero entry.

Consider BFgf :
101010 8
01010 {1 35 0
100100 0 = 0
010010 0 0
00100 {1 0

3.5

3.5

<« Index =0 mod?2

« Index =2 mod 3

e Reconstruct entry index via Chinese Remainder Theorem

o Two estimates of the entry’s value
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

o Example: B € {0,11°%6, F¢f ¢ C® contains 1 nonzero entry.

Consider BFgf :
101010 8
01010 {1 35 0
100100 0 = 0
010010 0 0
00100 {1 0

3.5

3.5

<« Index =0 mod?2

« Index =2 mod 3

e Reconstruct entry index via Chinese Remainder Theorem

o Two estimates of the entry’s value

SAVED ONE INNER PRODUCT!
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

101010 8 3.5
01010 1 35 0
100100 0 = O
010010 0 0
001001 0 3.5
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

101010 8 3.5
01010 1 a5 0
100100 [-FF'-| 77 |=]0
010010 0 0
00100 1 0 3.5
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Basic ldea of [l., 2013] in the case || Fnf|lo = 1

101 0 1
01010
10010
0100 1
00100
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Basic ldea of [l., 2013] in the case || Fnf|lo = 1

300
300 -
* 0 =
*+ 0 = 0
x 0 x 0
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

0
300 300 0 35
0
300 /200 aalas || 8
x 0 x 0 % 0 6 0 0
*+ 0 x 0 % 0 0 35
« 0« 0 %0 0 ‘

@ We only utilize 4 entries from f € C®
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Basic ldea of [l., 2013] in the case || Fnf|lo = 1

100
‘/§'f2'<o 00
100
\@-fg-<o 0 1
000

ooo) 8 3.5
100 a5 0
ooo)-f610' =| 0
000 0 0
010 0 3.5

@ We only utilize 4 entries from f € C®
@ Computed Efficiently using 2 FFTs
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

100
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@ We only utilize 4 entries from f € C®
@ Computed Efficiently using 2 FFTs

@ Reconstruct frequency index via Chinese Remainder Theorem
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

100
‘/§'f2'<o 00
100
\@-fg-<o 0 1
000

@ We only utilize 4 entries from f € C®
@ Computed Efficiently using 2 FFTs

@ Reconstruct frequency index via Chinese Remainder Theorem
@ Two estimates of nonzero Fourier coefficient
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Compressive Sensing Overview

Basic ldea of [l., 2013] in the case || Fnf|lo = 1

100
‘/§'f2'<o 00
100
\@-fg-<o 0 1
000

@ We only utilize 4 entries from f € C®
@ Computed Efficiently using 2 FFTs

@ Reconstruct frequency index via Chinese Remainder Theorem
@ Two estimates of nonzero Fourier coefficient

IGNORED TWO ENTRIES OF f!
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Part II: Extensions to Other Bases, and to Higher Dimensions Part Il.1 — Motivation for Extensions to Other Bases

Extensions: Compressed Sensing for Parametric PDE

@ Setup: Given PDE A(x)u = g, x € [0,27]P parameters,
approximate Quantity of Interest (Qol) f(x) = Gu(x) (real valued)
as a function of x.

@ Core observation: Qol f(x) is approximately sparse in
appropriate (truncated) product basis T

X)~ Y cnTn(X)
neqQ

that is, eachn € Ip := {0,..., N — 1}P, indexes a basis function
Th and for n € Q C Ip with s = |Q| small, ¢, € C is the coefficient.
@ More concretely, we consider basis functions, indexed by n € Ip,

of the form D
X) =[] Tjin (%)
=1

where each Tj., is a 1-dim basis function (e.g., Tjn(x) = @',
orthogonal polynomials, ... ).
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Part II: Extensions to Other Bases, and to Higher Dimensions Part Il.1 — Motivation for Extensions to Other Bases

Extensions: Compressed Sensing for Parametric PDE

@ Recall our goal: Approximate f : [0,27]° — R sparse in {Tp}.

@ Samples: Each PDE solve yields ~ f(x;) for some fixed set of
parameters X; (of our choosing).

@ In matrix form: Recover s-sparse ¢ from

f(x1) Ta,(X1)  Tnp(x1) -+ -+ Tnp(X1)
f(x2) Tni(X2) Tny(X2) -+ - Tn p(X2)
f - s - . . . . c
f(’;m) Th, (.xm) Tn, ('Xm) e TnNDI(Xm)
=: dc

@ Strategy [Rauhut, Schwab, Adcock, Webster, ...]: Ensure, e.g.,
that ® € R™N° has the Restricted Isometry Property (RIP) s.t.

max dLds —Id
Sch,\S|§sH SY¥S H2~>2

is small. Then, appeal to compressive sensing recovery methods.
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Part II: Extensions to Other Bases, and to Higher Dimensions Part Il.1 — Motivation for Extensions to Other Bases

Motivation: Compressed Sensing for Parametric PDEs

@ Strategy [Rauhut, Schwab, Adcock, Webster, ...]:
» Compute f(x;) for X4, X2, ..., Xy (random?)
Computational cost: m x (cost of PDE solve).
» Recover the ¢ € CN’ using ¢4 minimization, OMP, CoSaMP, ...

Computational cost: — or poly((log(N))") using, e.g.,
hyperbolic cross assumptions to constrain the overall basis size.

@ Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]J:
Recovery guarantees if m > spolylog(N®, s).

The Goal: Approximate f : [0, 27]° — C using as few evaluations as
possible, as quickly as possible... in O (D°...)-time.
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Part II: Extensions to Other Bases, and to Higher Dimensions Part Il.1 — Motivation for Extensions to Other Bases

Motivation: Compressed Sensing for Parametric PDEs

@ Strategy [Rauhut, Schwab, Adcock, Webster, ...]:
» Compute f(x;) for X4, X2, ..., Xy (random?)
Computational cost: m x (cost of PDE solve).
» Recover the ¢ € CN’ using ¢4 minimization, OMP, CoSaMP, ...

Computational cost: — or poly((log(N))") using, e.g.,
hyperbolic cross assumptions to constrain the overall basis size.

@ Prototypical desired result [Rauhut, Schwab, Adcock, Webster, ...]J:
Recovery guarantees if m > spolylog(N®, s).

The Goal: Approximate f : [0, 27]° — C using as few evaluations as
possible, as quickly as possible... in O (D°...)-time.

Can we mitigate curse of dimensionality in last step?
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Part II: Extensions to Other Bases, and to Higher Dimensions Part 1.2 — Extensions BON Product Bases to High Dimensions

CoSaMP [Needell, Tropp] for General Product Bases

(Recall: f = oc, f € C™, & € C™N° ¢ e CN’ s-sparse)

Algorithm 1 CoSaMP(o, f, s) recovery algorithm

1:c¢0=0 {Trivial intitial approximation}

2: v« f {Current samples=input samples}

3: k<0

4: repeat

5 k<« Kk+1

6: W< dfv {Form signal proxy}

7: S < supp(Was) {Identify large components}

8: T <« SUsupp(chk—T) {merge supports}

9: ar <« dﬂrf {Signal estimation by least-squares}
10: ck—a™ {Prune to obtain next approximation}
11: v+« f— ock {Update current samples}

12: until halting criterion true
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Part II: Extensions to Other Bases, and to Higher Dimensions Part 1.2 — Extensions BON Product Bases to High Dimensions

Numerics: Fourier Basis

-+~ Our method

Runtime in seconds
%

Number of samples
=
X
\
\

0 20 40 60 80 0 20 40 60 80
D D

(a) (b)

Figure: Fourier basis, N =20, D € {5,10,15,20,--- ,75}, s =5.
Reconstruction errors in 2 ~ 1015,

@ Standard compressive sensing methods would require more bytes
of memory than there are atoms in the universe in order to store
their intermediate solutions when D = 75. ...

M.A. lwen (MSU) Sparse Fourier Transforms March 1%, 2019 14 /15



Conclusion

Thank You! Some other great talks coming up. . .

@ Sina Bittens: Faster sparse FFTs for functions with structured
support. For example, frequencies confined to a few (a priori
unknown) bands.

@ Toni Volkmer, and Bosu Choi: More on (Sparse) Fourier
transforms in high dimensions!

Post Doc Position Available!

Email if interested (markiwen@math.msu.edu)
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