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D. Foerster (Université de Bordeaux) The crucial role of parallel d = 6 FFT in a new computational algorithm for electronic structureSIAM, CSE21, March 1-5, 2021 1 / 9



Outline

1 Gaps of semiconductors

2 GW approximation

3 Complexity and memory bottleneck of GW

4 Reduce storage by fft + Nyquist

5 KAUST-Oslo fft in d = 6 for d = 3 correlators

6 Conclusions and open questions
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Gaps of semiconductors

Semiconductors (SC) → electronics, LED lighting, solar cells ...
Liquid of interacting electrons in crystalline environment.

Electronic wave functions ψp(r) = eip·rφp(r), with φp(r) periodic in unit cell
Band energies E(p) depend on Bloch momenta p = (p1, p2, p3).

silicon unit cell bands of silicon

Bands are filled E(p) < 0 or empty E(p) > 0.

band gap = min
p,E(p)>0

E(p)− max
p,E(p)≤0

E(p)

band gap of SC → applications.
Example: silicon band gap matches peak in solar spectrum.
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GW approximation

Lars Hedin [1] added ”self energy” Σ = iGW to include Coulomb interaction.

Propagator G, density response χ, screened Coulomb W , self energy Σ

χq(r, r′,τ) = −2i
∑

p1−p2≡q

G+
p1

(r, r′, τ)G−p2 (r′, r,−τ) (1)

Wq(g, g′, ω) = V
1/2
q (g)

1

δgg′ − V
1/2
q (g)χq(g, g′, ω)V

1/2
q (g′)

V
1/2
q (g′) (2)

Σp(r, r′, t) = i
∑

p1+p2≡p

Gp1 (r, r′, t)Wp2 (r′, r, t) (3)

r, r′ points in the unit cell, t =time, p = Bloch momenta.
Gap computed from self energy Σ via Dyson’s equation.

Resulting gaps correct for non magnetic semiconductors:

gaps via GW (green) and LDA (red) vs experiment for some semiconductors
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Complexity and memory bottleneck of GW

N3 points (r1, r2, r3) in unit cell.
For natoms atoms in unit cell N3 ' 500 ∗ natoms empirically sufficient.
Products of correlators cheap, with O(N6) = O(n2

atoms) operations

Σp(r, r′, t) = i
∑

p1+p2≡p

Gp1 (r, r′, t)Wp2 (r′, r, t)

Construction of Gp and the inversion in Wq cost O(n3
atoms) operations.

Complexity of GW :

1 O(n3
atoms) if correlations fit into memory

2 O(n4
atoms) or worse otherwise

Difference between a day and a year for natoms = 100..1000.

Memory bottle neck. Complex correlation function F (r, r′) in the unit cell.

needed memory = 16 ·N6 bytes

memory per core = 2 · 109 bytes

Only N ≤ 23 modes/direction fit into a core - too few for interesting semi conductors.
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Reduce storage by fft + Nyquist

Consider d = 3 + 3 Fourier transform f(g, g′) of complex correlator F (r, r′)

f(g, g′) =
∑
r,r′

exp i(gr − g′r′)F (r, r′) (4)

Nyquist |gi|, |g′i| ≤
N
4

reduces storage by 26 = 64.

With Nyquist, gap still converges towards correct limit [5].
Probable reason: Coulomb interaction is long range.

Convergence, with Nyquist’s condition, in Si of the band gap, as N tends to infinity
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Details of the reduction of storage

Compute density correlator χ from Fourier image

G±p (g,g′,τ) for |gi|, |g′i| ≤
N
4

G±p (g, g′, τ)
Fourier⇒ G±p (r, r′, τ)

χq(r, r′,τ) = −2i
∑

p1−p2=q

G+
p1

(r, r′, τ)G−p2 (r′, r,−τ)

χq(r, r′,τ)
Inverse Fourier⇒ χq(g, g′,τ)

d = 6 fft costs only O(n2
atoms)log(natoms) operations.

Without Nyquist, O(n3
atoms) GW needs special computers with large memory [4].

With Nyquist, O(n3
atoms) GW on a PC.
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KAUST-Oslo fft in d = 6 for d = 3 correlators

Distributed correlations need a distributed fft in d = 6 dimensions

F (r, r′) =
∑
g,g′

exp−i(gr − g′r′)f(g, g′) (5)

Fortunately, the KAUST-Oslo algorithm [6] works in any dimension.

Dr Aseeri of KAUST has found no bandwidth bottleneck up to N = 112 and 4096 cores.

wall time, measured/predicted vs N , by Dr Aseeri at Shaheen/KAUST

N = 112→ natoms = 2800 - sufficient for organic semiconductors.
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Conclusions

Band gaps of semiconductors involve d = 3 correlations F (r, r′) -

If correlators fit into computer memory, an O(n3
atoms) algorithm applies -

Nyquist’s condition on the Fourier image of correlations removes memory bottleneck, but
correlations must be spread over many cores -

Use of the KAUST-Oslo fft algorithm in d = 6 dimensions should allow O(n3
atoms)

prediction of bandgaps of semiconductors.

Thanks
I am indebted to Dr. Dalcin of KAUST University for explanations of the KAUST-Oslo algorithm
and advice on parallel computing.

Dr Aseeri and Professor Keyes, both also from KAUST University, respectively suggested this
contribution and helped with its funding.

Dr Gueddida of Nancy University contributed on form and content of this presentation.
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D. Foerster (Université de Bordeaux) The crucial role of parallel d = 6 FFT in a new computational algorithm for electronic structureSIAM, CSE21, March 1-5, 2021 9 / 9


	Gaps of semiconductors
	GW approximation
	 Complexity and memory bottleneck of GW
	 Reduce storage by fft + Nyquist
	 KAUST-Oslo fft in d=6 for d=3 correlators
	Conclusions and open questions

