MS260

Next Generation FFT Algorithms in Theory and Practice: Parallel Implementations and Applications

- Organizers:
 - Daisuke Takahashi University of Tsukuba, Japan
 - Franz Franchetti

Carnegie Mellon University, U.S.

– Samar A. Aseeri

King Abdullah University of Science & Technology (KAUST), Saudi Arabia

– Benson Muite

Kichakato Kizito, Kenya

Aim of this minisymposium

- The fast Fourier Transform (FFT) is an algorithm used in a wide variety of applications, yet does not make optimal use of many current hardware platforms.
- Hardware utilization performance on its own does not however imply optimal problem solving.
- The purpose of this minisymposium is to enable exchange of information between people working on alternative FFT algorithms, to those working on FFT implementations, in particular for parallel hardware.
- <u>http://www.fft.report</u> 2021/3/4

MS260

- 2:15-2:35 Automatic Tuning of Computation-Communication Overlap for Parallel 3-D FFT with 2-D Decomposition Daisuke Takahashi, University of Tsukuba, Japan
- 2:35-2:55 Updates on FFTX and Spectralpack Franz Franchetti, Carnegie Mellon University, U.S.
- 2:55-3:15 A Scheduling Policy to Improve 10% of Communication Time in Parallel FFT Samar A. Aseeri, King Abdullah University of Science & Technology (KAUST), Saudi Arabia
- 3:15-3:35 FFT for Magnetohydrodynamic Simulations Benson Muite, Kichakato Kizito, Kenya
- 3:35-3:55 The Crucial Role of Parallel FFT in a New Computational Algorithm of Electronic Structure Dietrich Foerster, Bordeaux University, France

Automatic Tuning of Computation-Communication Overlap for Parallel 3-D FFT with 2-D Decomposition

Daisuke Takahashi Center for Computational Sciences University of Tsukuba, Japan

Outline

- Background
- Objectives
- Parallel 3-D FFT with 2-D Decomposition
- Computation-Communication Overlap
- Automatic Tuning of Parallel 3-D FFT with 2-D decomposition
- Performance Results
- Conclusion

Background (1/2)

- The fast Fourier transform (FFT) is widely used in science and engineering.
- Several FFT libraries with automatic tuning have been proposed, including FFTW [Frigo and Johnson 05] and SPIRAL [Puschel et al. 2005, Franchetti et al. 2018].
- Parallel FFTs on distributed-memory parallel computers require intensive all-to-all communication, which affects their performance.
- How to overlap the computation and the all-to-all communication is an issue that needs to be addressed for parallel FFTs.

Background (2/2)

- A typical decomposition for performing a parallel 3-D FFT is slabwise.
 - A 3-D array $x(N_1, N_2, N_3)$ is distributed along the third dimension N_3 .
 - N_3 must be greater than or equal to the number of MPI processes.
- This becomes an issue with very large MPI process counts for a massively parallel cluster of many-core processors.
- To solve this problem, parallel 3-D FFTs with 2-D decomposition have been proposed [Takahashi 2010, Pekurovsky 2012, Ayala and Wang 2013].

Related Works

- Overlapping methods of all-to-all communication and FFT algorithms for torus-connected massively parallel supercomputers [Doi and Negishi 2010].
 - None of their implementations optimize the computationcommunication overlap automatically.
- Computation-communication overlap and parameter auto-tuning for scalable parallel 3-D FFT [Song and Hollingsworth 2016].
 - Their approach requires the non-blocking MPI_lalltoall operation described in the MPI-3.0 standard.
 - The number of MPI_Test calls also needs to be tuned.

Objectives

- On the other hand, a computation-communication overlap method that introduces a communication thread with OpenMP has been presented [Idomura et al. 2014, Maeyama et al. 2015].
- This method does not require the MPI-3.0 standard non-blocking collective operations.
- We used this method for the computationcommunication overlap.
- We propose a method for the automatic tuning of the computation-communication overlap for a parallel 3-D FFT with 2-D decomposition.

3-D DFT

3-D discrete Fourier transform (DFT) is given by

$$y(k_{1}, k_{2}, k_{3})$$

$$= \sum_{j_{1}=0}^{n_{1}-1} \sum_{j_{2}=0}^{n_{2}-1} \sum_{j_{3}=0}^{n_{3}-1} x(j_{1}, j_{2}, j_{3}) \omega_{n_{3}}^{j_{3}k_{3}} \omega_{n_{2}}^{j_{2}k_{2}} \omega_{n_{1}}^{j_{1}k_{1}},$$

$$0 \le k_{r} \le n_{r} - 1, \omega_{n_{r}} = e^{-2\pi i/n_{r}}, 1 \le r \le 3$$

1-D Decomposition along the z-axis

1. FFTs in x-axis 2. FFTs in y-axis 3. FFTs in z-axis

With a slab decomposition

2-D Decomposition along the y- and z-axes

1. FFTs in x-axis 2. FFTs in y-axis 3. FFTs in z-axis

With a pencil decomposition

Computation-Communication Overlap [Idomura et al. 2014]

!\$OMP PARALLEL !\$OMP MASTER

MPI communication

 MPI communication is performed on the master thread

DO I=1,N

Computation

← Computation is performed

by a thread other than the

END DO SOMP DO ← Implicit barrier master thread

DO I=1,N synchronization

Computation using the result of communication

END DO !\$OMP END PARALLEL Computation is performed after completion of the MPI communication

Automatic Tuning of Parallel 3-D FFT with 2-D Decomposition

- The automatic tuning process consists of three steps:
 - Selection of the MPI process grid ($P \times Q$)
 - Selection of the number of divisions NDIV for the computation-communication overlap
 - Selection of the block size NB

Selection of MPI Process Grid

- Typically, *P* and *Q* such that the total number of MPI processes is $P \times Q$ are chosen to be $P \approx Q \approx \sqrt{PQ}$.
- By searching all combinations of *P* and *Q*, optimal combinations of *P* and *Q* can be examined.
- When the number of MPI processes $P \times Q$ is a power of two, even if all combinations of P and Q have been examined, the search space is of size $\log_2(PQ) + 1$.

Selection of Number of Divisions for Computation-Communication Overlap

- When the number of divisions for computationcommunication overlap is increased, the overlap ratio also increases.
- On the other hand, the performance of all-to-all communication decreases due to reducing the message size.
- Thus, a tradeoff exists between the overlap ratio and the performance of all-to-all communication.
- The default overlapping parameter of the original FFTE 7.1alpha is NDIV=4.
- In our implementation, the overlapping parameter NDIV is varied between 1, 2, 4, 8, and 16.

Selection of Block Size

- The default blocking parameter of the original FFTE 7.1alpha is NB=32.
- Although the optimal block size may depend on the problem size, the block size NB can also be varied.
- In our implementation, the block size NB is varied between 8, 16, 32, and 64.

Performance Results

- To evaluate the parallel 3-D FFT with automatic tuning, we compared
 - FFTE 7.1alpha (without overlap)
 - FFTE 7.1alpha (with overlap, NDIV=4)
 - FFTE 7.1alpha with automatic tuning (AT)
 FFTW 3.3.9
- Weak scaling (N = 256 × 512 × 512 × MPI processes) and strong scaling (N = 256 × 512 × 512) were measured.

Evaluation Environment

- Oakforest-PACS at Joint Center for Advanced HPC (JCAHPC).
 - 8208 nodes, Peak 25.008 PFlops
 - CPU: Intel Xeon Phi 7250 (68 cores, Knights Landing 1.4 GHz)
 - Interconnect: Intel Omni-Path Architecture
 - Compiler: Intel Fortran compiler 19.0.5.281 (for FFTE) Intel C compiler 19.0.5.281 (for FFTW)
 - Compiler option: "-O3 -xMIC-AVX512 -qopenmp"
 - MPI library: Intel MPI 2019.5.281
 - flat/quadrant, MCDRAM only, KMP_AFFINITY=balanced
 - Each MPI process has 17 cores and 17 threads,
 i.e. 4 MPI processes per node.

Results of Automatic Tuning of Parallel 3-D FFTs (Oakforest-PACS, 8192 MPI processes)

	FFTE 7.1alpha (with overlap)					FFTE 7.1alpha with AT				
N^3	Ρ	Q	NDIV	NBLK	GFlops	Ρ	Q	NDIV	NBLK	GFlops
512^3	64	128	4	32	701.5	64	128	1	64	2199.0
1024^3	64	128	4	32	3857.6	32	256	1	64	6928.0
2048^3	64	128	4	32	8941.3	64	128	1	16	12012.2
4096^3	64	128	4	32	7875.5	8	1024	1	16	15511.5
8192^3	64	128	4	32	7508.9	4	2048	2	8	22231.7

As the problem size increases, MPI processes PxQ with an elongated shape becomes optimal.

Performance of Parallel 3-D FFTs $(N = 256 \times 512 \times 512)$

Breakdown of Execution Time in FFTE 7.1alpha $(N = 8192^3, 8192 \text{ MPI processes})$

Conclusion

- We proposed an automatic tuning of computationcommunication overlap for parallel 3-D FFT with 2-D decomposition.
- We used a computation-communication overlap method that introduces a communication thread with OpenMP.
- An automatic tuning facility for selecting the optimal parameters of the MPI process grid, the computationcommunication overlap, and the block size was implemented.
- The performance results demonstrate that the proposed implementation of a parallel 3-D FFT with 2-D decomposition and automatic tuning is efficient for improving the performance.