
A scheduling policy to improve 10% of
communication time in parallel FFT

Samar Aseeri, PhD



QUICK BACKGROUND

Definition of Fourier Transform

𝑥 → 𝑘 ∶ 𝑓 𝑥 =
1
2𝜋 *

+,

,

𝑒./0𝐹 𝑘 𝑑𝑘 , 𝑘 → 𝑥 ∶ 𝐹 𝑘 = *
+,

,

𝑒+./0𝑓 𝑥 𝑑𝑥

Cooley and Tukey, 1965

Why is it Important?

4𝑓(6) = (𝑖𝑘)6 9𝑓

Limitations



INTRODUCTION

Aim is to speed up FFTs on
Cray XC40 machine by using
the full bandwidth offered by
the cluster

For this, we implement some
strategies to reduce communication 
time of the extensively used FFT 
algorithm

For testing we used the FFTK
parallel library developed by
collaborators of this work

We try to obtain an optimal 
performance for the FFT by leveraging 
the all-to-all topology of Dragonfly 
networks besides the implementation of 
other techniques.

Several job placements and
reordering cases were
examined and some findings
will be highlighted here



FFTK LIBRARY

PARALLEL Libraries DEVELOPERS

ALGORITHM
9𝑓 = ∑/;/<,/= 𝑓(𝑥, 𝑦, 𝑧)𝑒

+./;0 𝑒+./<@𝑒+./=A

FEATURES



SHAHEEN TOPOLOGY

• It is a Cray XC40 and it is the 52 fastest 
supercomputer in the world

• It consists of about 200000 CPU cores
• It manages a speed of about 7 Petaflops/s 

theoretical peak and 5.5 Petaflops/s of Linpack
performance

• It uses Dragonfly Topology



EXPERIMENTS

Contiguous vs non-contiguous: In this
approach we tested whether the
’−−contiguous’ flag, which allocates job
on contiguous nodes, has any effect on
total time. We found that for certain
grid sizes we get better strong scaling
with this flag.

Bandwidth test: Here we find what is
bandwidth per wire, we are actually
getting, compared to the documented
bandwidth.

Morton Order: This is a job-placement
scheme which is a compromise
between row-major and column-major
placement.

MPI_Vectors vs Local rearrangement:
Passing 3D data to Alltoall required
some tricks. Either we can use
MPI_Vectors or rearrange the data
ourselves. We compared time for both
cases.

Job Placement: In this approach we
place the job on specific nodes that
have physical all-to-all connection.
Using this approach we were able to
reduce the communication time by
10% compared to regular scheduling.



Contiguous vs non-contiguous

• SLURM scheduler has a flag that allocated contiguous nodes. 

• This is enabled by ’#SBATCH −−contiguous’ in the jobscript file. 

• We tested it for two grid sizes 20483 and 15363 and up to 2048 and 1536 cores respectively. 

• The scaling of the code is modelled by the equation 𝑇 = 𝑝−𝛾 , where T is the time taken to perform the transforms, p is the the number of 
processors used. 

• In the ideal case, when the number of processors is doubled, the time must come to half, which makes 𝛾 = 1.

• For the performed grid sizes, we see that for 20483, non contiguous gives 𝛾 = 0.9 and contiguous gives 𝛾 = 1. But for 15363, we get 𝛾 = 1 for 
contiguous as well as non-contiguous cases. 

Scaling of FFTK on grid 20483 and
15363 respectively showing total
time with −−contiguous flag and

without it. Here ppn means
processor per node and ’contig’

refers to contiguous.



Bandwidth test

• It is documented that network wires of Shaheen II have a bandwidth of 14 GB/s and ideally per-node-bandwidth should
match this value. 

• We used mpiBench to find the sustained bandwidth reached in Alltoall and found that for 1 ppn we are getting around 2GB/s per process and 
for 32 ppn, we get bandwidth per process from 300MB/s at 256 nodes down to 40MB/s at 16384 nodes. 

• By comparing node bandwidth, for 1ppn we get 2GB/s and for 32ppn we get 9GB/s at 8 nodes to 1GB/s at 512 nodes. The benchmark is shown 
in the Figure.

Benchmarking results using mpiBench. We see that
per core bandwidth goes maximum up to 2GB/s for
1ppn and per node bandwidth goes up to 9GB/s for

32ppn.



Morton Order

• FFT when done in pencil decomposition, the 3D grid
looks like a 2D array of pencils from the top, these
pencils interact either row-wise or column-wise
during different phases of communication. 

• In row-major MPI ranking, the row processes reside on
nearby nodes whereas column processes are well
separated in the cluster. 

• From Experiment A, we have seen that communication in nearby 
nodes is faster compared to discontinuous nodes. 

• So we decided to use Morton order, which is a
compromise between row-major and column-major
ordering. 

• MPI rank ordering is shown for both cases
in the following tables.

Scaling of FFTK with
Morton-order MPI
ranking. Here x-axis

represents the
number of nodes
used with 32ppn.



MPI_Vectors vs Local rearrangement

MPI_Alltoall is a crucial
component of FFT. When we
pass data to this function, it
assumes that the data is 1D. It
divides the 1D data evenly
among all processes and
distributes it.

Passing a multidimensional
data into MPI_Alltoall is a bit
tricky. Either we can use
MPI_Vector or rearrange the
array ourselves.

We have tried both cases up
to 65535 processors and found
that both of them take the
same time.



Job Placement

• Due to many levels of physical all-to-all connections we decided to
explore whether we can use such physical connections to improve
MPI_Alltoall performance. 

• To do this experiment we needed to produce a map between sequential node 
numbers and it’s location in the cluster. 

• For this we created a web based Nid-marker. This tool takes the node-id list and 
visualises its location in the cluster. 

• We studied performance on directly connected nodes, across 18 groups.

• Here, in the resulted plot, the blue line represents communication time
when placed on directly connected nodes and the orange line
represents communication time when placed on default allocated
nodes. 

• Here we save around 100 milliseconds (ms) per transform at
36 nodes and around 10ms at 216 nodes saving around 10% of the
total communication time. 

• Also, we get a better scaling when jobs are placed on directly connected nodes as 
shown in the plot.

• Numbers of percentage improvement are given in Table. 4. 

• The present study was performed with 1ppn and used only one node of
connected blades. 

• We will study the same with 32ppn with all 4 nodes in the respective blades. Then 
we can go up to 27,648 cores.



CONCLUSION

In this paper we have evaluated various
factors that may impact the
communication time of parallel Fourier
Transform.

We found that the impact of job
placement improves the performance
of parallel Fourier Transform, tested on
FFTK library, on a Dragonfly network
cluster, Shaheen II.

The evaluations, so far, demonstrate
that when the jobs are placed on
directly connected blades, we get 10%
reduction in communication time.

This study is also applicable to other
supercomputers based on this topology 
and almost all other parallel FFT library as they use 
MPI_Alltoall for communication. Moreover, 
the Cray Exascale machines (Shasta) announced 
at the CUG will most likely use the dragonfly 
topology or something similar. 

We also found that scaling exponent within a 
chassis is greater by 7% compared to those beyond 
that.



Collaborators

Dr. Anando
Chatterjee

Prof. Mahendra
Verma Prof. David Keyes

IITK KAUST

https://cug.org/proceedings/cug2020_proceedings/includes/files/spec108s1.pdf

http://https/cug.org/proceedings/cug2020_proceedings/includes/files/spec108s1.pdf


ACKNOWLEDGMENT

The authors thank the members of the Supercomputer Laboratory at King Abdullah University for providing
the necessary resources and guidance. This research was supported by the Extreme Computing Research
Center (ECRC) at KAUST and by the Simulation and Modelling Laboratory at IIT Kanpur.

Thanks for your attention




