MS83
Next Generation FFT Algorithms in Theory
and Practice: Parallel Implementations and

Applications
« Organizers:

— Daisuke Takahashi
University of Tsukuba, Japan

— Franz Franchetti
Carnegie Mellon University, U.S.

— Samar A. Aseeri
King Abdullah University of Science &
Technology (KAUST), Saudi Arabia

2022/2/26 SIAM PP22

Aim of this minisymposium

* The fast Fourier Transform (FFT) is an algorithm
used in a wide variety of applications, yet does not
make optimal use of many current hardware
platforms.

« Hardware utilization performance on its own does
not however imply optimal problem solving.

* The purpose of this minisymposium is to enable
exchange of information between people working
on alternative FFT algorithms, to those working on

-FT implementations, in particular for parallel

nardware.

* http://www.fft.report

2022/2/26 SIAM PP22 2

http://www.fft.report/

MS83

1:50-2:10 Parallel Implementation of FFT in a Finite Field
Daisuke Takahashi, University of Tsukuba, Japan

2:15-2:35 Updates on Sequential and Parallel FFTX
Franz Franchetti, Carnegie Mellon University, U.S.

2:40-3:00 A Comparison of Parallel Profiling Tools for
Programs Utilizing the FFT

Samar A. Aseeri, King Abdullah University of Science &
Technology (KAUST), Saudi Arabia; Benson Muite, University of
Tartu, Estonia

3:05-3:25 Beyond 2D Parallelization of Multi-Dimensional
FFTs

Doru Thom Popovici, Lawrence Berkeley National Laboratory,
U.S.; Martin D. Schatz, University of Texas at Austin, U.S.; Franz
Franchetti and Tze Meng Low, Carnegie Mellon University, U.S.

2022/2/26 SIAM PP22 3

Parallel Implementation of FFT
in a Finite Field

Daisuke Takahashi

Center for Computational Sciences
University of Tsukuba, Japan

2022/2/26 SIAM PP22

Outline

Background

Objectives

Number-theoretic Transform (NTT)
Vectorization of NTT Kernels
Parallel Implementation of NTT
Performance Results

Conclusion

2022/2/26 SIAM PP22

Background (1/2)

The fast Fourier transform (FFT) is an a

lgorithm

that is widely used today in scientific and

engineering computing.

FFTs are often computed using complex or real
numbers, but it is known that they can also be

computed in a ring and a finite field [Pol

ard 1971].

Such a transform is called the number-t
transform (NTT).

neoretic

The NTT is used for homomorphic encryption and

multiple-precision multiplication.

2022/2/26 SIAM PP22

Background (2/2)

When computing the NTT, modular

multiplication takes up most of the computation
time.

Modular multiplication includes modulo
operations, which are slow due to the integer
division process.

However, Montgomery multiplication
[Montgomery 1985] is known to avoid this.

The butterfly operation of the NTT can be
performed by using Montgomery multiplication.

2022/2/26 SIAM PP22 7

Related Works

 NTL [Shoup et al.] is a C++ library for doing number
theory, and it contains functions for NTTs.
— Although the NTL is thread-safe, parallel NTT is not supported.

 SPIRAL-generated modular FFTs have been proposed
[Meng et al. 2010].

— Experiments were performed using 32-bit integers and 16-bit
primes using Intel SSE4.1 instructions.

* An implementation of NTT using the Intel AVX-
512IFMA (Integer Fused Multiply-Add) instructions has
been proposed [Boemer et al. 2021].

— This implementation is available as Intel HEXL in open source.

2022/2/26 SIAM PP22 8

Objectives

 We vectorize NTT kernels using the Intel
Advanced Vector Extensions 512 (AVX-512)
iInstructions and parallelize NTT using OpenMP.

2022/2/26 SIAM PP22

Number-theoretic Transform (NTT)

« The Discrete Fourier transform (DFT) can be
defined over rings and fields other than the
complex field [Pollard 1971].

* The definition of DFT can be expressed in a
field F, = Z/pZ where p is a prime number:
n—1

y(k) = z x(j)a),{;kmod p, 0<k<n-1,

]=0
where w,, is the primitive n-th root of unity.

2022/2/26 SIAM PP22 10

Stockham Radix-2 NTT Algorithm

Algorithm 1 Stockham radix-2 NTT algorithm

Input: n = 29, Xo(j) ==(j), 0 < j < n—1, and wn 15 the primitive n-th root of

unity.
Output: y(k) = X (k) =7 z(j)wi modp, 0 < k<n—1
1: | & n/2
2:m 1

d: for t from 1 to g do

4: for j from O tol -1 do

b for k from () to m — 1 do

i oo +— Xi—1(k + jm)

T c1 +— Xi—1lk 4+ jm + Im)

8: Xilk+ 29m) «— (cp 4+ c1) mod p
0 Xelk+2jm4+m) — wl™(co — c1) mod p
10: end for

11: end for

12: [« [/2

13: m+ 2m

14: end for

2022/2/26 SIAM PP22 11

Vectorization of NTT Kernels (1/2)

« NTT kernels include modular addition, subtraction,
and multiplication.

 The modular addition ¢ = (a + b) mod N for a,b <
N can be replaced by the addition ¢ = a + b and
the minimum operation ¢ = min(c,c — N) for
unsigned integer values a, b, ¢, and N with wrap-
around two’s complement arithmetic.

* The Intel AVX-512F (Foundation) instruction set
supports the vpminugq instruction for the 64-bit
unsigned integer minimum operation.

2022/2/26 SIAM PP22 12

Modular Additions and Subtractions
of Packed 63-bit Integers Using Intel
AV X-512 Intrinsics

_mb12i _mmb12_addmod_epubd(__mbi2i a, __mbi2i b, __mb12i N)
/* Compute (al:] + b[:]1) mod N[:]. =%/
{

__mb121 c;

c = _mmbl12_add_epi6d(a, b);
¢ = mmbl2 min epubd(c, _mmb12_sub_epiBdi{c, N));

return c;

¥

_mb12i _mmb12_ submod_epufd(__mbi2i a, __mbi2i b, __mb12i N)
/* Compute (al:] - b[:]) mod N[:]. =*/

{
__mb121 c;

¢ = _mmb12_sub_epi6d(a, b);
¢ = mmbl2 min epufd(c, _mmb12_add epifdic, N));

returno c;

¥
2022/2/26 SIAM PP22

13

Radix-£ interleaved Montgomery
multiplication algorithm
[Montgomery 1985, Bos et al. 2014]

Algorithm 2 Radix-3 interleaved Montgomery multiphication algorithm

Input: A. B, N, u such that 4 = E:::,: a3, 0<a; <8 0< A B< N,
Bl e N < 8", ged(B, N)=1, p=—-N "' mod 3

Output: C = ABF7™ mod N such that 0 < C < N

|

: for i from (0 to n — 1 do

O — O+ a:i B

g +— pC mod 3

C—(C+qgN)/8

- 1f 7 > N then

O+ C—-—N

- return O

0 =] O DN = LD B =

2022/2/26 SIAM PP22 14

Vectorization of NTT Kernels (2/2)

The Intel 64 instruction set supports the mulg and mulx
instructions, which perform 64-bit x 64-bit —» 128-bit
unsigned integer multiplication.

In contrast, the Intel AVX-512F instruction set does not
support 64-bit X 64-bit - 128-bit unsigned integer
multiplication, but supports the vpmuludq instruction,
which performs 32-bit X 32-bit — 64-bit unsigned integer
multiplication.

The radix-f interleaved Montgomery multiplication
algorithm [Montgomery 1985, Bos et al. 2014] can be used
to vectorize multiple Montgomery multiplications.

In radix-23% interleaved Montgomery multiplication, there
are some overflows in 64-bit unsigned integer additions.

A vectorized multiple Montgomery multiplications of 62-bit
integers with f = 231 and n = 2 has been proposed to
avoid these overflows [Takahashi 2020].

2022/2/26 SIAM PP22 15

Montgomery Multiplication of Packed
62-bit Integers Using Intel AVX-512 Intrinsics

_-m5121 mmb512 mulmed_epubd(__mbl2i a, __mbl2i b mb121 N, __mbi121 mu)
/*= Compute (a[:] = b[:] = 2°-62) mod N[:]. We need mu[:] = -N[:1"°-1 mod 2°31. =/
i

_-m512i a0, ail, ®0, b1, ¢, NO, N1, q, t0, t1, ©2, t3;

[J—

a0 = _mm512_and_epif4(a, _mmb12_setl_epi6d (0xTFFFFFFF));
al = _mmb12_srli_epibdia, 31);
b0 = _mmb12_and_epif4(b, _mm512_setl_epi€d (0xTFFFFFFF));
bl = _mmb12_=srli_epi6d(b, 31);
NO = _mm512_and_epif4(N, _mmb12_setl_epibd (0xTFFFFFFF));
Ni = _mmb512_srli_epiga(N, 31);
t0 = _mmb512 mul_epu32(ald, bl);
tl = _mwhb12 mul_epud2(ald, bl);
t2 = _mnb12 mul_epu3Z(al, bl);
t3 = _mmb12 _mul_epud2(al, bl);

q = _mmbl2_and_epifd(_mmb12_mul_epu3d2(t0, mu), _mmbl2_setl_epifd(0xTFFFFFFF));

t0 = _mw512_add_epifd(_mm512_srli_epif4(_mmb12_add_epifd(t0, _mmb12_mul_epu32(g, NO)), 31),
_mm512_add_epifd(tl, _mmb512 mul_epu3d2i{qg, N1)));
t2 = _mmb12_add_epif4(t2, _mmb12 and epif4(t(, _mmbl2 setl_epi€4 (0xTFFFFFFF)));

td = _mmb12_add_epicd(td, _mmbl2_srli_epifd(td, 31));

_mm512_and_epifd(_mmb512_mul _epud2(tl, mu), _mmb12_ setl_epi6d (0xTFFFFFFF));

t2 = _mmb12_add_epi6d(_mmb512_srli_epifd(_mmbl2_add_ epifd(t2, _mmbl12 mul epud2(g, NO)), 313,
_mm512_add_epif4(t3, _mm512_mul_epud2{q, N1)}});

¢ = _mmbl2 min_epubd(tld, _mmbl2_sub_spi€d(tl, N));

s
il

return c;

T
2022/2/26 SIAM PP22 16

In-Cache NTT Algorithm

We use Stockham radix-2, 4, and 8 NTT algorithms for
iIn-cache NTTs.

It is known that the radix-4 or 8 FFT reduces the

number of arithmetic operations compared to the radix-
2 FFT.

On the other hand, the radix-4 or 8 NTT does not
reduce the number of arithmetic operations compared
to the radix-2 NTT.

However, in view of the Byte/Operation ratio, the radix-
8 NTT is preferable to the radix-2 and 4 NTTs.

Although higher radix NTTs require more registers to
hold intermediate results, processors that support the
Intel AVX-512 instructions have 32 ZMM 512-bit
registers.

2022/2/26 SIAM PP22 17

Inner-loop Operations for
Radix-2, 4, and 8 NTT Kernels

_m
Loads 2

Stores 2 4 8
Modular multiplications 1 4 16
Modular additions/subtractions 2 38 32

Total arithmetic operations 3 12 48
Byte/Operation ratio 10.667 5.333 2.667

2022/2/26 SIAM PP22 18

Six-Step NTT Algorithm

If n has factors n, and n, (n = n; X n,), in the
same way as the six-step FFT algorithm [Bailey90],
the following six-step NTT algorithm is derived:

Step 1: Transposition
Step 2: n, individual n,-point multicolumn NTTs

Step 3: Twiddle factor (a),fsz) multiplication
Step 4. Transposition

Step 5: n, individual ny-point multicolumn NTTs
Step 6: Transposition

2022/2/26 SIAM PP22 19

Parallelization of Six-Step NTT

uinté4 t a[n1 * n2], b[n1 * n2], i, i, j, jj, omega, p;
#pragma omp parallel {
#pragma omp for collapse(2) private(i,},jj)
for (ii = 0; ii < n1; ii += NBLK)
for (jj = 0; jj < n2; jj += NBLK)
for (i =ii; i < min(ii + NBLK, n1); i++)
for (j =jj; j < min(jj + NBLK, n2); j++)
bj+i*n2]=a[i+]j* n1];
#pragma omp for

for (j = 0; j < n1; j++) A loop collapsing makes the

ntt2(&b[j * n2], n2, omega, p); length qf a loop long by |
collapsing nested loops into a
) single-nested loop.

2022/2/26 SIAM PP22 20

Performance Results

For performance evaluation, a comparison between
the implemented parallel NTT and the Intel HEXL
(version 1.2.3) [Boemer et al. 2021] was performed.

In the proposed implementation, NTT is performed with
a modulus of 62 bits, while in Intel HEXL, NTT is
performed with a modulus of 55 bits.

The proposed implementation was run with 1 to 28
threads and the elapsed time was measured.

Since Intel HEXL does not support parallel execution, it
was executed in a single thread.

The Giga Operations Per Second (Gops) values are
each based on (3/2)nlog, n for a transform of size
n=2m,

2022/2/26 SIAM PP22 21

Evaluation Environment

« HPE Superdome Flex

— CPU: Intel Xeon Platinum 8280M (28 cores, Cascade
Lake 2.7 GHz, DDR4 2933 MHz 24 TB)

— Compiler: Intel C compiler 19.1.3.304 (for proposed)
GNU C/C++ C compiler 8.4.0 (for Intel HEXL)

— Compiler option: “icc -O3 -xCASCADELAKE -fno-alias
-gopenmp -gopt-zmm-usage=high” (for proposed)
“gcc -03” (for Intel HEXL)

2022/2/26 SIAM PP22 22

Performance of NTTs
(Intel Xeon Platinum 8280M, 28 cores)

Length of transform

——Intel HEXL 1.2.3 (1 thread) —e—Proposed (1 thread) Proposed (28 threads)

2022/2/26 SIAM PP22

23

Discussion

The proposed implementation is slower than Intel
HEXL in a single-thread execution.

The reason for t
to 55 bits In Inte
Implementation

niIs IS that the modulus size is reduced
HEXL which the proposed

has a modulus size of 62 bits.

While the six-step NTT is suitable for parallelization, it
requires three matrix transpositions, and the overhead
of these matrix transpositions may be the reason why it
Is slower than Intel HEXL.

Intel HEXL is highly optimized using Intel AVX-512DQ
(Doubleword and Quadword) intrinsic.

The proposed implementation is faster than Intel HEXL
for n > 2% on 28 threads.

2022/2/26

SIAM PP22 24

Speedup for 224 -point NTTs
(Intel Xeon Platinum 8280M, 28 cores)

25

20

Speedup
[J

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28
Number of threads

2022/2/26 SIAM PP22 25

Conclusion

We proposed the implementation of the parallel
number-theoretic transform (NTT).

The butterfly operation of the NTT can be
performed by using Montgomery multiplication.

We vectorized NTT kernels using the Intel AVX-512
instructions and parallelized the six-step NTT by
using OpenMP.

Performance results demonstrate that the
implemented parallel NTT utilizes cache memory
effectively and exploits the Intel AVX-512
instructions.

2022/2/26 SIAM PP22 26

	MS83�Next Generation FFT Algorithms in Theory and Practice: Parallel Implementations and Applications
	Aim of this minisymposium
	MS83
	Parallel Implementation of FFT� in a Finite Field
	Outline
	Background (1/2)
	Background (2/2)
	Related Works
	Objectives
	Number-theoretic Transform (NTT)
	Stockham Radix-2 NTT Algorithm
	Vectorization of NTT Kernels (1/2)
	Modular Additions and Subtractions of Packed 63-bit Integers Using Intel AVX-512 Intrinsics
	Radix-𝛽 interleaved Montgomery multiplication algorithm�[Montgomery 1985, Bos et al. 2014]
	Vectorization of NTT Kernels (2/2)
	Montgomery Multiplication of Packed�62-bit Integers Using Intel AVX-512 Intrinsics
	In-Cache NTT Algorithm
	Inner-loop Operations for�Radix-2, 4, and 8 NTT Kernels
	Six-Step NTT Algorithm
	Parallelization of Six-Step NTT
	Performance Results
	Evaluation Environment
	Performance of NTTs�(Intel Xeon Platinum 8280M, 28 cores)
	Discussion
	Speedup for 2 22 -point NTTs�(Intel Xeon Platinum 8280M, 28 cores)
	Conclusion

