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Aim of this minisymposium
• The fast Fourier Transform (FFT) is an algorithm 

used in a wide variety of applications, yet does not 
make optimal use of many current hardware 
platforms.

• Hardware utilization performance on its own does 
not however imply optimal problem solving.

• The purpose of this minisymposium is to enable 
exchange of information between people working 
on alternative FFT algorithms, to those working on 
FFT implementations, in particular for parallel 
hardware.

• http://www.fft.report
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Parallel Implementation of FFT
in a Finite Field 

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan
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Outline
• Background
• Objectives
• Number-theoretic Transform (NTT)
• Vectorization of NTT Kernels
• Parallel Implementation of NTT
• Performance Results
• Conclusion
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Background (1/2)
• The fast Fourier transform (FFT) is an algorithm 

that is widely used today in scientific and 
engineering computing.

• FFTs are often computed using complex or real 
numbers, but it is known that they can also be 
computed in a ring and a finite field [Pollard 1971].

• Such a transform is called the number-theoretic 
transform (NTT).

• The NTT is used for homomorphic encryption and 
multiple-precision multiplication.
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Background (2/2)
• When computing the NTT, modular 

multiplication takes up most of the computation 
time.

• Modular multiplication includes modulo 
operations, which are slow due to the integer 
division process.

• However, Montgomery multiplication 
[Montgomery 1985] is known to avoid this.

• The butterfly operation of the NTT can be 
performed by using Montgomery multiplication.
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Related Works
• NTL [Shoup et al.] is a C++ library for doing number 

theory, and it contains functions for NTTs.
– Although the NTL is thread-safe, parallel NTT is not supported.

• SPIRAL-generated modular FFTs have been proposed 
[Meng et al. 2010].
– Experiments were performed using 32-bit integers and 16-bit 

primes using Intel SSE4.1 instructions.
• An implementation of NTT using the Intel AVX-

512IFMA (Integer Fused Multiply-Add) instructions has 
been proposed [Boemer et al. 2021].
– This implementation is available as Intel HEXL in open source.
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Objectives
• We vectorize NTT kernels using the Intel 

Advanced Vector Extensions 512 (AVX-512) 
instructions and parallelize NTT using OpenMP.
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Number-theoretic Transform (NTT)
• The Discrete Fourier transform (DFT) can be 

defined over rings and fields other than the 
complex field [Pollard 1971].

• The definition of DFT can be expressed in a 
field 𝐅𝐅𝑝𝑝 = 𝐙𝐙/𝑝𝑝𝐙𝐙 where 𝑝𝑝 is a prime number:

𝑦𝑦 𝑘𝑘 = �
𝑗𝑗=0

𝑛𝑛−1

𝑥𝑥 𝑗𝑗 𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗mod 𝑝𝑝, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,

where 𝜔𝜔𝑛𝑛 is the primitive 𝑛𝑛-th root of unity.
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Stockham Radix-2 NTT Algorithm
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Vectorization of NTT Kernels (1/2)
• NTT kernels include modular addition, subtraction, 

and multiplication.
• The modular addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 mod 𝑁𝑁 for 𝑎𝑎, 𝑏𝑏 <
𝑁𝑁 can be replaced by the addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 and 
the minimum operation 𝑐𝑐 = min(𝑐𝑐, 𝑐𝑐 − 𝑁𝑁) for 
unsigned integer values 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑁𝑁 with wrap-
around two’s complement arithmetic.

• The Intel AVX-512F (Foundation) instruction set 
supports the vpminuq instruction for the 64-bit 
unsigned integer minimum operation.
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Modular Additions and Subtractions 
of Packed 63-bit Integers Using Intel 

AVX-512 Intrinsics
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Radix-𝛽𝛽 interleaved Montgomery 
multiplication algorithm

[Montgomery 1985, Bos et al. 2014]
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Vectorization of NTT Kernels (2/2)
• The Intel 64 instruction set supports the mulq and mulx

instructions, which perform 64-bit × 64-bit → 128-bit 
unsigned integer multiplication.

• In contrast, the Intel AVX-512F instruction set does not 
support 64-bit × 64-bit → 128-bit unsigned integer 
multiplication, but supports the vpmuludq instruction, 
which performs 32-bit × 32-bit → 64-bit unsigned integer 
multiplication.

• The radix-𝛽𝛽 interleaved Montgomery multiplication 
algorithm [Montgomery 1985, Bos et al. 2014] can be used 
to vectorize multiple Montgomery multiplications.

• In radix-232 interleaved Montgomery multiplication, there 
are some overflows in 64-bit unsigned integer additions. 

• A vectorized multiple Montgomery multiplications of 62-bit 
integers with 𝛽𝛽 = 231 and 𝑛𝑛 = 2 has been proposed to 
avoid these overflows [Takahashi 2020].
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Montgomery Multiplication of Packed
62-bit Integers Using Intel AVX-512 Intrinsics
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In-Cache NTT Algorithm
• We use Stockham radix-2, 4, and 8 NTT algorithms for 

in-cache NTTs.
• It is known that the radix-4 or 8 FFT reduces the 

number of arithmetic operations compared to the radix-
2 FFT.

• On the other hand, the radix-4 or 8 NTT does not 
reduce the number of arithmetic operations compared 
to the radix-2 NTT.

• However, in view of the Byte/Operation ratio, the radix-
8 NTT is preferable to the radix-2 and 4 NTTs.

• Although higher radix NTTs require more registers to 
hold intermediate results, processors that support the 
Intel AVX-512 instructions have 32 ZMM 512-bit 
registers.
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Radix-2 Radix-4 Radix-8
Loads 2 4 8
Stores 2 4 8
Modular multiplications 1 4 16
Modular additions/subtractions 2 8 32
Total arithmetic operations 3 12 48
Byte/Operation ratio 10.667 5.333 2.667

Inner-loop Operations for
Radix-2, 4, and 8 NTT Kernels 



Six-Step NTT Algorithm
• If 𝑛𝑛 has factors 𝑛𝑛1 and 𝑛𝑛2 (𝑛𝑛 = 𝑛𝑛1 × 𝑛𝑛2), in the 

same way as the six-step FFT algorithm [Bailey90], 
the following six-step NTT algorithm is derived:

• Step 1: Transposition
• Step 2: 𝑛𝑛1 individual 𝑛𝑛2-point multicolumn NTTs
• Step 3: Twiddle factor (𝜔𝜔𝑛𝑛

𝑗𝑗1𝑗𝑗2) multiplication
• Step 4: Transposition
• Step 5: 𝑛𝑛2 individual 𝑛𝑛1-point multicolumn NTTs
• Step 6: Transposition
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Parallelization of Six-Step NTT
uint64_t a[n1 * n2], b[n1 * n2], i, ii, j, jj, omega, p;

#pragma omp parallel {
#pragma omp for collapse(2) private(i,j,jj)
for (ii = 0; ii < n1; ii += NBLK)

for (jj = 0; jj < n2; jj += NBLK)
for (i = ii; i < min(ii + NBLK, n1); i++)

for (j = jj; j < min(jj + NBLK, n2); j++)
b[j + i * n2] = a[i + j * n1];

#pragma omp for
for (j = 0; j < n1; j++)

ntt2(&b[j * n2], n2, omega, p);
…
}

202022/2/26 SIAM PP22

A loop collapsing makes the 
length of a loop long by 
collapsing nested loops into a 
single-nested loop.



Performance Results
• For performance evaluation, a comparison between 

the implemented parallel NTT and the Intel HEXL 
(version 1.2.3) [Boemer et al. 2021] was performed.

• In the proposed implementation, NTT is performed with 
a modulus of 62 bits, while in Intel HEXL, NTT is 
performed with a modulus of 55 bits.

• The proposed implementation was run with 1 to 28 
threads and the elapsed time was measured.

• Since Intel HEXL does not support parallel execution, it 
was executed in a single thread.

• The Giga Operations Per Second (Gops) values are 
each based on 3/2 𝑛𝑛 log2 𝑛𝑛 for a transform of size
𝑛𝑛 = 2𝑚𝑚.
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Evaluation Environment
• HPE Superdome Flex

– CPU: Intel Xeon Platinum 8280M (28 cores, Cascade 
Lake 2.7 GHz, DDR4 2933 MHz 24 TB)

– Compiler: Intel C compiler 19.1.3.304 (for proposed)
GNU C/C++ C compiler 8.4.0 (for Intel HEXL)

– Compiler option: “icc -O3 -xCASCADELAKE -fno-alias
-qopenmp -qopt-zmm-usage=high” (for proposed)

“gcc -O3” (for Intel HEXL)
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Performance of NTTs
(Intel Xeon Platinum 8280M, 28 cores)
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Discussion
• The proposed implementation is slower than Intel 

HEXL in a single-thread execution.
• The reason for this is that the modulus size is reduced 

to 55 bits in Intel HEXL which the proposed 
implementation has a modulus size of 62 bits.

• While the six-step NTT is suitable for parallelization, it 
requires three matrix transpositions, and the overhead 
of these matrix transpositions may be the reason why it 
is slower than Intel HEXL.

• Intel HEXL is highly optimized using Intel AVX-512DQ 
(Doubleword and Quadword) intrinsic.

• The proposed implementation is faster than Intel HEXL 
for 𝑛𝑛 ≥ 214 on 28 threads.
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Speedup for 222 -point NTTs
(Intel Xeon Platinum 8280M, 28 cores)
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Conclusion
• We proposed the implementation of the parallel 

number-theoretic transform (NTT).
• The butterfly operation of the NTT can be 

performed by using Montgomery multiplication.
• We vectorized NTT kernels using the Intel AVX-512 

instructions and parallelized the six-step NTT by 
using OpenMP.

• Performance results demonstrate that the 
implemented parallel NTT utilizes cache memory 
effectively and exploits the Intel AVX-512 
instructions.
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