
MS83
Next Generation FFT Algorithms in Theory
and Practice: Parallel Implementations and

Applications
• Organizers:

– Daisuke Takahashi
University of Tsukuba, Japan

– Franz Franchetti
Carnegie Mellon University, U.S.

– Samar A. Aseeri
King Abdullah University of Science &
Technology (KAUST), Saudi Arabia

2022/2/26 SIAM PP22 1

Aim of this minisymposium
• The fast Fourier Transform (FFT) is an algorithm

used in a wide variety of applications, yet does not
make optimal use of many current hardware
platforms.

• Hardware utilization performance on its own does
not however imply optimal problem solving.

• The purpose of this minisymposium is to enable
exchange of information between people working
on alternative FFT algorithms, to those working on
FFT implementations, in particular for parallel
hardware.

• http://www.fft.report
2022/2/26 SIAM PP22 2

http://www.fft.report/

MS83
• 1:50-2:10 Parallel Implementation of FFT in a Finite Field

Daisuke Takahashi, University of Tsukuba, Japan
• 2:15-2:35 Updates on Sequential and Parallel FFTX

Franz Franchetti, Carnegie Mellon University, U.S.
• 2:40-3:00 A Comparison of Parallel Profiling Tools for

Programs Utilizing the FFT
Samar A. Aseeri, King Abdullah University of Science &
Technology (KAUST), Saudi Arabia; Benson Muite, University of
Tartu, Estonia

• 3:05-3:25 Beyond 2D Parallelization of Multi-Dimensional
FFTs
Doru Thom Popovici, Lawrence Berkeley National Laboratory,
U.S.; Martin D. Schatz, University of Texas at Austin, U.S.; Franz
Franchetti and Tze Meng Low, Carnegie Mellon University, U.S.

2022/2/26 SIAM PP22 3

Parallel Implementation of FFT
in a Finite Field

Daisuke Takahashi
Center for Computational Sciences

University of Tsukuba, Japan

2022/2/26 SIAM PP22 4

Outline
• Background
• Objectives
• Number-theoretic Transform (NTT)
• Vectorization of NTT Kernels
• Parallel Implementation of NTT
• Performance Results
• Conclusion

2022/2/26 SIAM PP22 5

Background (1/2)
• The fast Fourier transform (FFT) is an algorithm

that is widely used today in scientific and
engineering computing.

• FFTs are often computed using complex or real
numbers, but it is known that they can also be
computed in a ring and a finite field [Pollard 1971].

• Such a transform is called the number-theoretic
transform (NTT).

• The NTT is used for homomorphic encryption and
multiple-precision multiplication.

62022/2/26 SIAM PP22

Background (2/2)
• When computing the NTT, modular

multiplication takes up most of the computation
time.

• Modular multiplication includes modulo
operations, which are slow due to the integer
division process.

• However, Montgomery multiplication
[Montgomery 1985] is known to avoid this.

• The butterfly operation of the NTT can be
performed by using Montgomery multiplication.

72022/2/26 SIAM PP22

Related Works
• NTL [Shoup et al.] is a C++ library for doing number

theory, and it contains functions for NTTs.
– Although the NTL is thread-safe, parallel NTT is not supported.

• SPIRAL-generated modular FFTs have been proposed
[Meng et al. 2010].
– Experiments were performed using 32-bit integers and 16-bit

primes using Intel SSE4.1 instructions.
• An implementation of NTT using the Intel AVX-

512IFMA (Integer Fused Multiply-Add) instructions has
been proposed [Boemer et al. 2021].
– This implementation is available as Intel HEXL in open source.

82022/2/26 SIAM PP22

Objectives
• We vectorize NTT kernels using the Intel

Advanced Vector Extensions 512 (AVX-512)
instructions and parallelize NTT using OpenMP.

92022/2/26 SIAM PP22

Number-theoretic Transform (NTT)
• The Discrete Fourier transform (DFT) can be

defined over rings and fields other than the
complex field [Pollard 1971].

• The definition of DFT can be expressed in a
field 𝐅𝐅𝑝𝑝 = 𝐙𝐙/𝑝𝑝𝐙𝐙 where 𝑝𝑝 is a prime number:

𝑦𝑦 𝑘𝑘 = �
𝑗𝑗=0

𝑛𝑛−1

𝑥𝑥 𝑗𝑗 𝜔𝜔𝑛𝑛
𝑗𝑗𝑗𝑗mod 𝑝𝑝, 0 ≤ 𝑘𝑘 ≤ 𝑛𝑛 − 1,

where 𝜔𝜔𝑛𝑛 is the primitive 𝑛𝑛-th root of unity.

102022/2/26 SIAM PP22

Stockham Radix-2 NTT Algorithm

112022/2/26 SIAM PP22

Vectorization of NTT Kernels (1/2)
• NTT kernels include modular addition, subtraction,

and multiplication.
• The modular addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 mod 𝑁𝑁 for 𝑎𝑎, 𝑏𝑏 <
𝑁𝑁 can be replaced by the addition 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 and
the minimum operation 𝑐𝑐 = min(𝑐𝑐, 𝑐𝑐 − 𝑁𝑁) for
unsigned integer values 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑁𝑁 with wrap-
around two’s complement arithmetic.

• The Intel AVX-512F (Foundation) instruction set
supports the vpminuq instruction for the 64-bit
unsigned integer minimum operation.

122022/2/26 SIAM PP22

Modular Additions and Subtractions
of Packed 63-bit Integers Using Intel

AVX-512 Intrinsics

132022/2/26 SIAM PP22

Radix-𝛽𝛽 interleaved Montgomery
multiplication algorithm

[Montgomery 1985, Bos et al. 2014]

142022/2/26 SIAM PP22

Vectorization of NTT Kernels (2/2)
• The Intel 64 instruction set supports the mulq and mulx

instructions, which perform 64-bit × 64-bit → 128-bit
unsigned integer multiplication.

• In contrast, the Intel AVX-512F instruction set does not
support 64-bit × 64-bit → 128-bit unsigned integer
multiplication, but supports the vpmuludq instruction,
which performs 32-bit × 32-bit → 64-bit unsigned integer
multiplication.

• The radix-𝛽𝛽 interleaved Montgomery multiplication
algorithm [Montgomery 1985, Bos et al. 2014] can be used
to vectorize multiple Montgomery multiplications.

• In radix-232 interleaved Montgomery multiplication, there
are some overflows in 64-bit unsigned integer additions.

• A vectorized multiple Montgomery multiplications of 62-bit
integers with 𝛽𝛽 = 231 and 𝑛𝑛 = 2 has been proposed to
avoid these overflows [Takahashi 2020].

152022/2/26 SIAM PP22

Montgomery Multiplication of Packed
62-bit Integers Using Intel AVX-512 Intrinsics

162022/2/26 SIAM PP22

In-Cache NTT Algorithm
• We use Stockham radix-2, 4, and 8 NTT algorithms for

in-cache NTTs.
• It is known that the radix-4 or 8 FFT reduces the

number of arithmetic operations compared to the radix-
2 FFT.

• On the other hand, the radix-4 or 8 NTT does not
reduce the number of arithmetic operations compared
to the radix-2 NTT.

• However, in view of the Byte/Operation ratio, the radix-
8 NTT is preferable to the radix-2 and 4 NTTs.

• Although higher radix NTTs require more registers to
hold intermediate results, processors that support the
Intel AVX-512 instructions have 32 ZMM 512-bit
registers.

172022/2/26 SIAM PP22

182022/2/26 SIAM PP22

Radix-2 Radix-4 Radix-8
Loads 2 4 8
Stores 2 4 8
Modular multiplications 1 4 16
Modular additions/subtractions 2 8 32
Total arithmetic operations 3 12 48
Byte/Operation ratio 10.667 5.333 2.667

Inner-loop Operations for
Radix-2, 4, and 8 NTT Kernels

Six-Step NTT Algorithm
• If 𝑛𝑛 has factors 𝑛𝑛1 and 𝑛𝑛2 (𝑛𝑛 = 𝑛𝑛1 × 𝑛𝑛2), in the

same way as the six-step FFT algorithm [Bailey90],
the following six-step NTT algorithm is derived:

• Step 1: Transposition
• Step 2: 𝑛𝑛1 individual 𝑛𝑛2-point multicolumn NTTs
• Step 3: Twiddle factor (𝜔𝜔𝑛𝑛

𝑗𝑗1𝑗𝑗2) multiplication
• Step 4: Transposition
• Step 5: 𝑛𝑛2 individual 𝑛𝑛1-point multicolumn NTTs
• Step 6: Transposition

192022/2/26 SIAM PP22

Parallelization of Six-Step NTT
uint64_t a[n1 * n2], b[n1 * n2], i, ii, j, jj, omega, p;

#pragma omp parallel {
#pragma omp for collapse(2) private(i,j,jj)
for (ii = 0; ii < n1; ii += NBLK)

for (jj = 0; jj < n2; jj += NBLK)
for (i = ii; i < min(ii + NBLK, n1); i++)

for (j = jj; j < min(jj + NBLK, n2); j++)
b[j + i * n2] = a[i + j * n1];

#pragma omp for
for (j = 0; j < n1; j++)

ntt2(&b[j * n2], n2, omega, p);
…
}

202022/2/26 SIAM PP22

A loop collapsing makes the
length of a loop long by
collapsing nested loops into a
single-nested loop.

Performance Results
• For performance evaluation, a comparison between

the implemented parallel NTT and the Intel HEXL
(version 1.2.3) [Boemer et al. 2021] was performed.

• In the proposed implementation, NTT is performed with
a modulus of 62 bits, while in Intel HEXL, NTT is
performed with a modulus of 55 bits.

• The proposed implementation was run with 1 to 28
threads and the elapsed time was measured.

• Since Intel HEXL does not support parallel execution, it
was executed in a single thread.

• The Giga Operations Per Second (Gops) values are
each based on 3/2 𝑛𝑛 log2 𝑛𝑛 for a transform of size
𝑛𝑛 = 2𝑚𝑚.

212022/2/26 SIAM PP22

Evaluation Environment
• HPE Superdome Flex

– CPU: Intel Xeon Platinum 8280M (28 cores, Cascade
Lake 2.7 GHz, DDR4 2933 MHz 24 TB)

– Compiler: Intel C compiler 19.1.3.304 (for proposed)
GNU C/C++ C compiler 8.4.0 (for Intel HEXL)

– Compiler option: “icc -O3 -xCASCADELAKE -fno-alias
-qopenmp -qopt-zmm-usage=high” (for proposed)

“gcc -O3” (for Intel HEXL)

222022/2/26 SIAM PP22

Performance of NTTs
(Intel Xeon Platinum 8280M, 28 cores)

232022/2/26 SIAM PP22

0
5

10
15
20
25
30
35
40

G
op

s

Length of transform

Intel HEXL 1.2.3 (1 thread) Proposed (1 thread) Proposed (28 threads)

Discussion
• The proposed implementation is slower than Intel

HEXL in a single-thread execution.
• The reason for this is that the modulus size is reduced

to 55 bits in Intel HEXL which the proposed
implementation has a modulus size of 62 bits.

• While the six-step NTT is suitable for parallelization, it
requires three matrix transpositions, and the overhead
of these matrix transpositions may be the reason why it
is slower than Intel HEXL.

• Intel HEXL is highly optimized using Intel AVX-512DQ
(Doubleword and Quadword) intrinsic.

• The proposed implementation is faster than Intel HEXL
for 𝑛𝑛 ≥ 214 on 28 threads.

242022/2/26 SIAM PP22

Speedup for 222 -point NTTs
(Intel Xeon Platinum 8280M, 28 cores)

252022/2/26 SIAM PP22

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Sp
ee

du
p

Number of threads

Conclusion
• We proposed the implementation of the parallel

number-theoretic transform (NTT).
• The butterfly operation of the NTT can be

performed by using Montgomery multiplication.
• We vectorized NTT kernels using the Intel AVX-512

instructions and parallelized the six-step NTT by
using OpenMP.

• Performance results demonstrate that the
implemented parallel NTT utilizes cache memory
effectively and exploits the Intel AVX-512
instructions.

262022/2/26 SIAM PP22

	MS83�Next Generation FFT Algorithms in Theory and Practice: Parallel Implementations and Applications
	Aim of this minisymposium
	MS83
	Parallel Implementation of FFT� in a Finite Field
	Outline
	Background (1/2)
	Background (2/2)
	Related Works
	Objectives
	Number-theoretic Transform (NTT)
	Stockham Radix-2 NTT Algorithm
	Vectorization of NTT Kernels (1/2)
	Modular Additions and Subtractions of Packed 63-bit Integers Using Intel AVX-512 Intrinsics
	Radix-𝛽 interleaved Montgomery multiplication algorithm�[Montgomery 1985, Bos et al. 2014]
	Vectorization of NTT Kernels (2/2)
	Montgomery Multiplication of Packed�62-bit Integers Using Intel AVX-512 Intrinsics
	In-Cache NTT Algorithm
	Inner-loop Operations for�Radix-2, 4, and 8 NTT Kernels
	Six-Step NTT Algorithm
	Parallelization of Six-Step NTT
	Performance Results
	Evaluation Environment
	Performance of NTTs�(Intel Xeon Platinum 8280M, 28 cores)
	Discussion
	Speedup for 2 22 -point NTTs�(Intel Xeon Platinum 8280M, 28 cores)
	Conclusion

