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Aim of this minisymposium :

§ The fast Fourier Transform (FFT) is an algorithm used in a wide variety of 
applications, yet does not make optimal use of many current and emerging 
platforms such as many-core processors, GPUs, and distributed-memory systems.

§ Hardware utilization performance on its own does not, however, imply optimal 
problem-solving.

§ The purpose of this minisymposium is to enable an exchange of information 
between people working on FFT algorithms such as sparse and conventional FFTs, 
to those working on FFT implementations, in particular for parallel hardware. 
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The Fast Fourier Transform in the
Exascale Era

S. Aseeri1, B.K. Muite2, D. Takahashi3

Abstract
The Fast Fourier Transform (FFT) is an important component of many pro-
grams. On many emerging high performance computing architectures, the
FFT may not work well on the full parallel computer. A good benchmark
will lead to adoption of the best FFT software technology. Identification
of alternative algorithms to the FFT along with comparisons of efficiency
will lead to optimal use of high performance computers. A galvanized and
involved benchmarking community is required to do this.

The Fast Fourier Transform
An accurate and low computational cost
algorithm used for solving problems re-
lated to

• Wave propagation (such as seismic
inversion)

• Diffusion (such as hydrocarbon reser-
voirs)

• Solid and fluid mechanics

• Electromagnetism

• Signal processing

Figure 1: Demonstration of how the
Fourier transform represents a signal in
frequency space

Project Aim
• One cannot improve what one cannot measure

• Measure and report FFT performance to encourage improvements in efficiency and
architectural adaptability

• Obtain consensus to enable widespead adoption of a long lived HPC benchmark suite, a
component of which will enable performance prediction for FFT on high performance
computers

• Create a benchmarking website resource that will serve as a guide for researchers and
users of FFT libraries

Current Hardware Trends
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Figure 2: (a) and (b) compare general microprocessors (data from [3,4]) to the CPU
and accelerator on the top system on the top 500 list and the top global FFT from HPC
challenge. (c) shows latency of the top system on the top 500 list and the top global FFT
from HPC challenge

• Fewer cores and lower clock speeds on the top systems than on the typical processor

• No improvement in network latency and low bisection bandwidth

• Heterogeneous hardware with accelerators such as GPUs (high bandwidth, even higher
flop rate), NEC SX-Aurora TSUBASA (high bandwidth, balanced flop rate)

•→ Need a flexible benchmark specification

Some Fast Fourier Transform Benchmarks
• FFTW data comparison (http://www.fftw.org/benchfft/)

– Comparison of serial and multicore transforms.

– Data presented as graphs on website

– Not regularly updated

• GearSHIFFT data comparison (https://www.kcod.de/gearshifft/)

– Recent benchmark

– FFT benchmarking software that does multiple tests to estimate statistical variation

– Currently focused on CPU (serial and multicore) and GPU

– No distributed memory data

– Nice web interface to explore data

– Few submissions so far

• HPC challenge (http://icl.cs.utk.edu/hpcc)

– Global one dimensional distributed memory FFT

– Reference implementation uses FFTE

– Data available from 2004, lower submission rate since 2012

• NAS Parallel Benchmarks (https://www.nas.nasa.gov/publications/npb.html)

– Global three dimensional distributed memory FFT

– Reference implementation uses Swartzrauber FFT

– Little data available for download

Parallel Fast Fourier Transform Performance
• High performance computing challenge and high performance linpack
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Figure 3: Evolution of best global 1D
FFT performance from HPC challenge
and best HPL performance from the
Top 500 list
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Figure 4: Evolution of ratio of best
global 1D FFT performance from HPC
challenge to best HPL performance
from the Top 500 list

– Ratio of relative performance of FFT to HPL is low

– Global 1D FFT on K computer from 2011 still best of all HPC challenge submissions

• Benchmarking numerical solution of the Klein-Gordon equation
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Figure 5: Time for solution of Klein Gordon equation using FFT on a 5123 discretiza-
tion [1]. Entries with a * used FFTE, all other entries used 2DECOMP&FFT. Entry
with a + used 1 core per node.

– Compare performance by best time to solution

– Examine strong scaling → A larger computer on its own is not always helpful

Alternative Algorithms
• Signal processing and linear solvers: Sparse FFT, Non-uniform FFT

• Linear solvers: Fast Multipole Method, Multigrid, Fast Gauss Transform

Meetings To Date
• Birds of Feathers: SC 17 and ISC 18

• Presentations: SIAM PP 18 and IXPUG Middle East Conference 2018

Roadmap
By mid 2019, develop community and reach consensus on a benchmark or set of bench-
marks to determine when to use the FFT and alternatives to the FFT on communication
constrained parallel computer. After reaching consensus, foster community collectection
and discussion of data.

• In person meetings at conferences related to high performance computing and domain
specific areas that utilize parallel FFTs

• Collaboration with other benchmark writers to find a widely accepted and adopted
benchmark suite for supercomputer co-design

• Online discussion and dissemination through web page (http://www.fft.report/), forum
(https://www.forum.fft.report/) and mailing list (fft@lists.ut.ee)
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• In 1807 Jean Fourier invented a technique to 
solve the heat diffusion equation in a conducting 
plate with arbitrary forcing. This technique was 
the Fourier Transform. 

𝑥 → 𝑘 ∶ 𝑓 𝑥 =
1
2𝜋 *

+,

,

𝑒./0𝐹 𝑘 𝑑𝑘

𝑘 → 𝑥 ∶ 𝐹 𝑘 = *
+,

,

𝑒+./0𝑓 𝑥 𝑑𝑥

Definition of Fourier Transform
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• Cooley and Tukey published a paper on the Fast 
Fourier Transform an O(n log n) method for the 
calculation of the Discrete Fourier Transform 
which is an approximation of the Fourier 
Transform which originally is derived from the 
Fourier Series.

• The FFT algorithm was developed by Gauss 
1805 but this was not recognized until recent 
time.

• Time complexity of FFT according to DFT 
reduces from 𝑂 𝑛5 𝑡𝑜 𝑂(𝑛 𝑙𝑜𝑔𝑛).

Cooley and Tukey, 1965
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• It is an important tool for image and signal 
processing, radio astronomy, wave propagation 
(such as seismic inversion), diffusion (such as 
hydrocarbon reservoirs), solid and fluid 
mechanics and electromagnetism.

• It is an accurate and low computational cost 
algorithm

• It solves multiscale problems
• Derivatives are simply calculated  <𝑓(=) = (𝑖𝑘)= ?𝑓

Why is it Important?
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• Efforts to optimize the performance of 3D parallel FFT 
libraries have tended to focus on slab and pencil 
decompositions.

• Slab decompositions tend to perform well on small process 
counts.

• pencil decompositions scale better on large core counts.
• Applications that rely on FFTs adopt different data 

decomposition strategies:
• 1D decompositions give each process a complete 2D slab
• 2D decomposition give each process a complete 1D pencil
• 3D decompositions give each process a block that does not span 

the global domain in any dimension
• The main performance bottleneck of parallel 3D FFTs is 

the communication. Once 3D data is distributed over MPI 
processes, all-to-all communications are unavoidable.

Limitations
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• FFTW
• FFTE
• FFTK
• 2decomp&fft
• P3DFFT
• PFFT
• OpenFFT
• AccFFT
• GPU FFT and Xion phi FFT
• Hybrid FFT

Parallel Libraries
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• Introduction
• FFTK Library
• Shaheen Topology
• Allocation Control
• Scaling and Conclusion

Work in Progress
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• Aim is to speed up FFTs on Cray XC40 machine 
by using the full bandwidth offered by the cluster

• For testing we used the FFTK parallel library 
developed by collaborators of this work

• Several job placements and reordering cases 
were examined and some findings will be 
highlighted here

Introduction
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• Chatterjee, Verma, and group members of 
Kanpur 

• Scaled up to 196608 cores of Shaheen II of 
KAUST for 3072C

• Tested up 6144C grid
• Fluid solver TARANG uses it
• 2D pencil decomposition is typically used for 

large core counts

FFTK Library
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• The forward transform is given by 
?𝑓 = D

/E/F,/H

𝑓(𝑥, 𝑦, 𝑧)𝑒+./E0 𝑒+./FK𝑒+./HL

• Algorithm
• FFT along Z axis
• Communicate Z pencils to Y pencils. 
• FFT along Y axis
• Communicate Y pencils to X pencils. 
• FFT along X axis

FFTK Library
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• Works also for 2D data by setting 𝑁K = 1
• Slab FFT can be performed by setting 𝑝OPQ = 1
• Available basis: FFF, SFF, SSF, SSS and ChFF

FFTK Library
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• Cray XC40
• 38 fastest supercomputer in the world
• It consists of about 200000 CPU cores
• It manages a speed of about 7 Petaflops/s 

theoretical peak and 5.5 Petaflops/s of Linpack
performance

• It uses Dragonfly Topology

Shaheen Topology



3 
Chassis

16 
blades

36 
Cabinets

Group Group Group Group

each 
blade 
has 4 
nodes

Each group consists of 21 + 20 server 
nodes

Each group consists of 171 + 172 compute nodes

each 
node 

consists 
of 2 

sockets  
each with  
16 coresTotal  compute nodes = 6,174

Total cores = 197,568

Shaheen Topology
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Shaheen Topology
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• Optimize Communication
• Grid ordering
• Contiguous Nodes
• Job Placement

Allocation Control
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• Grid Ordering
• grid_order is a tool by which we can manually specify 

how MPI ranks will be distributed in nodes.
• There are four types of rank placements that can be 

specified by the system using an environment variable 
MPICH_RANK_REORDER

• Our primary tests shows ordering only controls MPI 
rank distribution after nodes have already been 
allocated by the system.

• We might investigate it further even though it is not 
what we are looking for.

Allocation Control
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• Contiguous Nodes
• Slurm can provide us with contiguous set of nodes from within a 

chassis which are directly connected with each other in all-to-all 
fashion. 

• Since FFT also requires all-to-all communication we expect it to give 
better performance in this case.

• The “− −𝑐𝑜𝑛𝑡𝑖𝑔𝑢𝑜𝑢𝑠” flag of slurm does not necessarily assign 
contiguous nodes within a chassis if we for instance run tests on 48 
nodes.

• It assigns any contiguous nodes according to its digit order so could 
be within two chassis or within a group or within two groups. 

• Even though testing it on 32 ppn gave some improvement but still this 
is not what we are looking for. 

• We use SLURM_JOB_NODELIST environment variable to check the 
nodes allocated for the jobs.

Allocation Control
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• Job Placement
• Using the Slurm flag “−−𝑛𝑜𝑑𝑒𝑙𝑖𝑠𝑡 = 𝑛𝑖𝑑0[1284 −
1343]” we can determine specific nodes for the jobs.

• For this a useful tool called “NID Marker” has been 
designed in this work specifically for Shaheen to help 
us visualize node locations and find node number 
order to be used for the above Slurm flag.

Allocation Control

Desktop_Personal_LapTop/nid_marker.html
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• Test Case
• Examined grid size is 512C
• We run up to 60 cores using 1ppn
• A Chassis contains a max  of 60 compute nodes
• We compare performance of nodes within one 

Chassis verses default choice of the nodes by the 
system

Scaling and Conclusion



Scaling and Conclusion
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Set2: default ( =-0.89)
Set2: nodelist ( =-0.91)
Set3: default ( =-0.86)
Set3: nodelist ( =-0.76)
Set4: default ( =-0.91)
Set4: nodelist ( =-0.91)
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Scaling and Conclusion
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Scaling and Conclusion

Set2: Nid-Marker 
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Scaling and Conclusion
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Scaling and Conclusion
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Set, Set2, Set3: Nid-Marker 



2/14/19MS53 - SIAMPP'20

• Full core utilization
• Test large grid size to detect behavior with high 

core counts.
• Experiments on reserved racks
• Examining impact of dragonfly topology plugin 

available at slurm

Scaling and Conclusion 



Scaling and Conclusion

Full:
We ran 1080^3

We ran from 12 to 216 cores

Optimized:
We used 1 core per blade (4 nodes)
We used 1 chassis per group (two racks)
We used all the 18 groups

Default:
We used all core in blade (4 nodes)
We used all 6 chassis per group (two racks)
We used from 12 to 216 cores.

2/14/19MS53 - SIAMPP'20



Scaling and Conclusion
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Scaling and Conclusion

Chassis: We ran 1080^3

We ran from 2 to 12 cores

12 because it has many factors thus we get many points in scaling plot.

Optimized:
We used 1 core per blade (4 nodes)

Default:
We used all core in blades (4 nodes)

2/14/19MS53 - SIAMPP'20



Scaling and Conclusion
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• To see if we align MPI communication with physical connections, then how 
much do we gain.

• From previous runs, we have seen that when we use all the cores (199608) 
of the system gamma was close to 0.8. From these runs we see that up to 
216 nodes spread across 18 groups, we are getting very good scaling.

• Our next step will be to tweak communication pattern of Tarang to make use 
of this observation. 

• We can use
• 1st chassis of all groups to solve for x component of velocity.

• 2nd chassis of all groups to solve for y component of velocity.

• 3rd chassis of all groups to solve for z component of velocity.

• 4th chassis of all groups to solve for temperature

Scaling and Conclusion 
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• David Keyes, KAUST (Project PI)
• Mahendra Verma and Anando Chatterjee,  IITK  

(FFTK developers)

Collaborators
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• Questions/Comments and Collaborations are 
welcomed!

• Email: samar.aseeri@kaust.edu.sa
• Upcoming HPC venues:

• BID’20 at PPoPP’20
• HPBench’20 at HPCS’20

Tank You

mailto:samar.aseeri@kaust.edu.sa

