FFTs for (mostly) Particle Codes

within the DOE Exascale Computing Program

Steve Plimpton
Sandia National Laboratories

SC17 FFT BOF - November 2017 - Denver, CO

% CCR

Center for Computing Research

@ Sandia Sandia National Laboratories is a multi-mission laboratory managed and operated by

Natlonal National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of T YL = 3)

UM} A
. Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security
Laboratories sqministration under contract DE-NAOG03525. Presentation: SAND2017-12701PE Nl B

CoPA = ECP Co-design Center for Particle Apps

e Particle app customers for FFTs within ECP

MD: LAMMPS (S Plimpton, SNL)

Nbody: HACC (S Habib, ANL)

PIC: XGC for tokamaks (CS Chang, PPPL)

PIC: WarpX for accelerators (J-L Vay, LBNL)

o MPM: ExaAM for additive manufacturing (J Turner, ORNL)

@ Other customers within ECP

o NWChemEx: quantum DFT (T Dunning, PNNL)
o AMReX: co-design grid library (J Bell, LBNL)

CoPA = ECP Co-design Center for Particle Apps

e Particle app customers for FFTs within ECP

MD: LAMMPS (S Plimpton, SNL)

Nbody: HACC (S Habib, ANL)

PIC: XGC for tokamaks (CS Chang, PPPL)

PIC: WarpX for accelerators (J-L Vay, LBNL)

o MPM: ExaAM for additive manufacturing (J Turner, ORNL)

@ Other customers within ECP

o NWChemEx: quantum DFT (T Dunning, PNNL)
o AMReX: co-design grid library (J Bell, LBNL)

@ All codes want performance, scalability, portability

e portability important for ECP cornucopia of hardware
o FFTs only 5-20% of app run-time

Two FFT libs already available from CoPA apps

e SWFFT = HACC FFT

o https://xgitlab.cels.anl.gov/hacc/SWFFT
o Adrian Pope (ANL), D Daniel (LANL), N Frontiere (ANL)

o Parallel FFTs = LAMMPS FFT

o http://www.sandia.gov/~sjplimp/download.html
o Steve Plimpton (Sandia)
e need a better lib name!

HACC vs LAMMPS FFTs

Similarities:
Both old, 10-20 years

Written to address needs of parent app

e not much else available at the time

e HACC: big FFTs on lots of procs, bricks & pencils

o LAMMPS: arbitrary initial decompositions
Written in C + MPI, callable from C/C++-/Fortran
Only the data movement

e use FFTW or MKL for 1d FFTs

Just 3d complex-to-complex

Poisson solves = convolution layout
o true of many ECP apps & particle apps generally

HACC vs LAMMPS FFTs

Interesting differences:

e MD: 10243 FFT is huge (~1B atoms)
Nbody: 10243 FFT is small, HACC uses 10K3 FFTs = 1T
MPI usage: 1 MPI/node to all-MPI/node, depends on app

double vs single precision

brick <= pencil comm versus pencil <= pencil comm

Arbitrary initial & final grid decompositions

e Load-balanced tiling of 3d domain via RCB

e Start/end FFTs with arbitrary grid decomposition

Brick-to-pencil and pencil-to-pencil comm primitives

Communication trade-offs

e HACC: brick <= pencil
e 6 comm stages: brick = x = brick, ditto fory & z
o Per-stage: each proc sends/recvs with P'/3 procs
e LAMMPS: pencil < pencil
e 4 comm stages: brick = x = y = z = brick
o Per-stage: each proc sends/recvs with P2/3 procs

Communication trade-offs

e HACC: brick <= pencil
e 6 comm stages: brick = x = brick, ditto fory & z
o Per-stage: each proc sends/recvs with P'/3 procs
e LAMMPS: pencil < pencil
e 4 comm stages: brick = x = y = z = brick
o Per-stage: each proc sends/recvs with P2/3 procs

o Key point:

o P/3 vs P2/3 can be significant
o P=1M: P/3 = 100 messages, P?/3 = 10000 messages

Communication trade-offs

HACC: brick < pencil
e 6 comm stages: brick = x = brick, ditto fory & z
o Per-stage: each proc sends/recvs with P'/3 procs

e LAMMPS: pencil < pencil

e 4 comm stages: brick = x = y = z = brick

o Per-stage: each proc sends/recvs with P2/3 procs

o Key point:

o P/3 vs P?/3 can be significant
o P=1M: P/3 = 100 messages, P?/3 = 10000 messages

Same comm volume per stage

HACC: fewer/larger messages (better), 6 stages
LAMMPS: more/smaller messages, 4 stages (better)
Trade-off in # of stages vs # of messages (latency)
Which is faster might depend on N, P, machine

Point-to-point versus all-to-all comm

o Data transpose for 3d FFT is not really all-to-all
@ Only all-to-all within groups of P/3 or P2/3 procs

Point-to-point versus all-to-all comm

Data transpose for 3d FFT is not really all-to-all
Only all-to-all within groups of P/3 or P2/3 procs

1st option: point-to-point MPI calls within each group

2nd option: use MPI_all2all() within sub-communicators

o learned this idea from Paul Coffman (IBM, now ALCF)
o significantly faster than full MPI_all2all(MPI_.COMM_WORLD)

Point-to-point versus all-to-all comm

Data transpose for 3d FFT is not really all-to-all

Only all-to-all within groups of P/3 or P2/3 procs

1st option: point-to-point MPI calls within each group
2nd option: use MPI_all2all() within sub-communicators

o learned this idea from Paul Coffman (IBM, now ALCF)
o significantly faster than full MPI_all2all(MPI_.COMM_WORLD)

Surprisingly 2nd option often faster than 1st option
e at least in LAMMPS
e don't think it was 20 years ago, but is now
e especially for vendor-optimized MPls

What I'd like to see ...

A single web site with timing results for all packages:

One-stop shopping for customer apps
Just 3d complex-to-complex would be fine, double/single
Various FFT sizes, various machines

Various choices of MPI tasks/node

Each package could advertise its list of features

