

nb3dfft

Jens Henrik Göbbert

Jülich Supercomputing Centre, Forschungszentrum Jülich GmbH, Germany

Motivation

Pseudo-Spectral Application

- isotropic homogeneous decaying/forced turbulence
- turbulent channel flow
- turbulent premixed flames
- scalar mixing
- 80% of the compute time required by 3d-FFTs
 - all-to-all communication
 - 2x data redistribution among processes

development of the improved 3d-FFT library ,nb3dfft'

- based on P3DFFT (thanks to Dmitry Pekurovsky)
- data reduction by including the filter process (dealiasing)
- overlapping communication and computation of multiple 3D-FFTs

Why we wrote our own 3D-FFT

JÜLICH FORSCHUNGSZENTRUM

It is all about saving compute time

Million core/h required to compute 6144³ project

В

while packing for the transpose

1d-FFT in z direction

considering access patterns

Goebbert, J. H.; Gauding, Michael; Ansorge, Cedrick; Hentschel, Bernd; Kuhlen, Torsten and Pitsch, Heinz Direct Numerical Simulation of Fluid Turbulence at Extreme Scale with psOpen. Advances in Parallel Computing Vol. 27 pp. 777-785 (2016).

nb3dfft Optimizations

Overlapping communication & computation

Overlapping Communication & Computation worker + scheduler thread

nb3dfft relies on the MPI 3.0 for

- non-blocking collective operations and OpenMP for starting
- scheduler + worker threads.

The **worker** passes any non-blocking MPI operation to the **scheduler**.

The **scheduler** executes the MPI commands and iteratively calls MPI_TEST to proceed.

Overlapping Communication & Computation application optimizations

2:

3:

4:

5:

6: 7: 8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

JÜLICH

FORSCHUNGSZENTRUM

nb3dfft Optimizations

Overlapping communication & computation

- message sizes stay large
- number of messages do not change
- 2 synchronization points instead of 2x13

Performance increase by overlapping comm & comp

	1024^3	2048^3	4096^3	6144^3
1024 nodes	15.50%	21.60%	-	-
2048 nodes	-	26.63%	29.63%	-
4096 nodes	-	17.70%	19.78%	-
8192 nodes	-	11.64%	22.69%	17.53%

Conclusion & Summary

Getting pseudo-spectral codes for DNS scale on large systems is challenging

- 3d-FFTs require lots of MPI_alltoall() calls, which cannot be avoided
- for best performance key functions have to rewritten

3d-FFT can be optimized, if it is not thought as a single function call, but as part of the algorithm

- Moving the required **filter operation** of the main algorithm into the 3d-FFT reduces the data to be send by 44.4% and the 1d-FFTs by 44.4%
- Calling multiple 3d-FFT for different fields at the same time allows overlapping of communication and computation

 -> ~20% performance gain

nb3dfft is available under GPL License at https://gitlab.version.fz-juelich.de/goebbert/nb3dfft

Appendix nb3dfft

nb3dfft Optimizations Implicit Filtering

Performance Measurements

RWTH Compute Cluster

- 672 MPI processes on 56 nodes
- domain size 2048³

JUQUEEN

- 16.384 MPI processes on 8192 cores
- domain size 4096³

