ccccccccccccc

A user’s perspective to
Parallel FFT library

YU FENG, University of California Berkeley

November 15, 2017

About : $HC17

hpc
Denver,CO ‘connecis.

Yu Feng

Github: @rainwoodman

FFT User / language binding

Experience

Particle-mesh / cosmology simulation / data analysis
« pfft-python, pmesh — nbodykit (~ 10K ranks)
. pfft - FastPM MP-Gadget (~100K ranks)

Tools and development process from the Python data-
science scene; o

FFT BoF November 15, 2017

Performance = Productivity &$17
Denver,CO ‘ggﬁnecis.

« Performance translates to productivity
- Faster code — higher throughput — productivity

- But not the full story.

« What about exploratory data analysis :

- Designing and implementing models takes time too!
. linking errors; dependency; compiler compatibility ...
. connecting the FFT API to other analysis code.
« “I'll work on this tomorrow because the code looked so scary.”
Tomorrow never comes.

Pipeline is longer than FFT:

Why was PFFT chosen? &$17

. Portable:

Special tools may yield more performance; at the cost of
portability

Interpretive languages prefer shared libraries;

Unfortunately C is still the only language in the industry
that is truly portable.

. Modular:
Do one thing and do it really well. Look at FFTW!

- A giant library that contains many domain specific jargons
scares user away.

Path Forward &$17
penerco| et

o A Higher level API for Parallel FFT

Probably the easiest place for everyone to agree on;

Can we design a higher level parallel FFT wrapper library
that can switch back-ends?

Can we design a higher level APl that each of the current
library can implement and expose?

Non-blocking / async FFT can be part of this API.

A Python example &&17

nnnnnnnnn

def longrange(x, delta_k, split, factor):
f = numpy.empty_like(x)

pot_k = delta_k.apply(FKN.laplace) \
.apply(FKN.longrange(split), out=Ellipsis)

for d in range(x.shape[1]):
force_d = pot_k.apply(FKN.gradient(d)) \
.c2r(out=Ellipsis)
force _d.readout(x, out=fl..., d])

Rl —

ccccccccccccc

« BTW: Anyone heard of distributed FFT on
TensorFlow / Torch ?

