
A user’s perspective to
Parallel FFT library

YU FENG, University of California Berkeley

November 15, 2017 FFT BoF

About :

l  Yu Feng

l  Github: @rainwoodman

l  FFT User / language binding

l  Experience

-  Particle-mesh / cosmology simulation / data analysis

l  pfft-python, pmesh → nbodykit (~ 10K ranks)

l  pfft → FastPM MP-Gadget (~100K ranks)

-  Tools and development process from the Python data-
science scene;

-  Python and MPI

November 15, 2017 FFT BoF

Performance != Productivity

l  Performance translates to productivity

-  Faster code → higher throughput → productivity

-  But not the full story.

l  What about exploratory data analysis :

-  Designing and implementing models takes time too!

l  linking errors; dependency; compiler compatibility ...

l  connecting the FFT API to other analysis code.

l  “I’ll work on this tomorrow because the code looked so scary.”
Tomorrow never comes.

-  Pipeline is longer than FFT:

l  I/O, short-range interaction, feature extraction, ...

l  in many cases it is only 10% to 50% of the computing

-  In real research activities, performance is still relevant, but
secondary.

Why was PFFT chosen?

l  Portable:

-  Special tools may yield more performance; at the cost of
portability

-  Interpretive languages prefer shared libraries;

-  Unfortunately C is still the only language in the industry
that is truly portable.

l  Modular:

-  Do one thing and do it really well. Look at FFTW!

-  A giant library that contains many domain specific jargons
scares user away.

l  Higher level API that focuses on feature, not
implementation:

-  Distribution of the FFT array cross ranks (parallel!); strides,
offsets, sizes; direct/indirect.

-  Different kinds of transforms (C-C C-R, and others)

-  Iteration over indices and neighbor indices (parallel
Convolution)

-  Planning? In-Place Out-Place? Why shall a user care?

l  Performance is the last concern:

-  The paper had some scaling charts up to 100K + ranks –
great!

Path Forward

l  A Higher level API for Parallel FFT

-  Probably the easiest place for everyone to agree on;

-  Can we design a higher level parallel FFT wrapper library
that can switch back-ends?

-  Can we design a higher level API that each of the current
library can implement and expose?

-  Non-blocking / async FFT can be part of this API.

A Python example

def longrange(x, delta_k, split, factor):
 f = numpy.empty_like(x)

 pot_k = delta_k.apply(FKN.laplace) \
 .apply(FKN.longrange(split), out=Ellipsis)

 for d in range(x.shape[1]):
 force_d = pot_k.apply(FKN.gradient(d)) \
 .c2r(out=Ellipsis)
 force_d.readout(x, out=f[..., d])

 f[...] *= factor

 return f

l  BTW: Anyone heard of distributed FFT on
TensorFlow / Torch ?

