
Parallelizing sparse FFT
using programming models
on state-of-the-art systems

Sunita Chandrasekaran, University of Delaware
Cheng Wang, Microsoft
Arnov Sinha, Numeca

Barbara Chapman, Stony Brook University
Detlef Hohl, Mauricio Araya, Amit St. Cyr, Shell

November 15, 2017FFT BoF

About :

� MIT’s sparse FFT 2012

� Computing FFT in a sub-linear time to efficiently locate the
most significant output (very few “large” coefficients present in
the frequency domain)

� Profiled & Parallelized sFFT
� Multicore using OpenMP (~4.5x on 6 threads)
� ARM + DSP using OpenMP
� GPUs using CUDA (~25𝑥 vs the MIT sFFT, ~10x faster than cuFFT for

large data size)
� GPUs using OpenACC (performance close to CUDA)

� Dynamic irregular memory access patterns makes
parallelization most challenging

� A runtime transformation algorithm to exploit temporal and
spatial locality

November 15, 2017FFT BoF

Irregular memory access pattern
Irregular Memory Access Pattern in Sparse FFT

n coordinates

B buckets

Irregular data
reference pattern

 buckets[i % B] += signal[idx] * filter[i]

• Randomly permutes the signal
spectrum and bins into a small
number of buckets

• Irregular memory access pattern

May 17, 2016 Cheng Wang (cwang35@uh.edu) 12 / 22

sFFT stages

How does sFFT work?

Permute Filter Subsampled
FFT Cuto Reverse Hash

FunctionPermute Filter Subsampled
FFT Cuto Reverse Hash

Function

Permute Filter Subsampled
FFT Cuto Reverse Hash

FunctionPermute Filter Subsampled
FFT Cuto Reverse Hash

Function

Input
Signal

Input
Signal

Permute Filter Subsampled
FFT Cuto Reverse Hash

FunctionPermute Filter Subsampled
FFT Cuto Reverse Hash

Function

Input
Signal

Permute Filter Subsampled
FFT Cuto Reverse Hash

FunctionPermute Filter Subsampled
FFT Cuto Reverse Hash

Function

Input
Signal

Permute Filter Subsampled
FFT Cuto Reverse Hash

FunctionPermute Filter Subsampled
FFT Cuto Reverse Hash

Function

Permute Filter Subsampled
FFT Cuto Reverse Hash

FunctionPermute Filter Subsampled
FFT Cuto Reverse Hash

Function

Input
Signal

Input
Signal

.

Keep the
coordinates
that occured

in at least half
of the location

loops

Estimate
the values of

the coe cients

Most time demanding parts

Presented by Cheng Wang (UH) Project Review: Parallel Sparse FFT February 12, 2014 19 / 54

4

Profiling Results

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

18 20 22 23 24 25 28

El
ap

se
d

tim
e

[s
]

Input data size (N, power of 2)

Estimation
Location

Stages 3-5
Perm+filter

Perm+filter (Step 1-2) is the “hotpot” of the algorithm

Presented by Cheng Wang (UH) Project Review: Parallel Sparse FFT February 12, 2014 20 / 54

Profiling sparse FFT

5

Computational hotspot in the
algorithm – Permutation +
Filter, dominant
K is fixed to 1000

Computational hotspot in the
algorithm – Estimation is
dominant
N is fixed to 2^25

Using OpenMP to parallelize sFFT on Multicore

K= 1000

Wang, Cheng, et al. "Parallel sparse FFT." Proceedings of the 3rd
Workshop on Irregular Applications: Architectures and Algorithms.
ACM, 2013

• PsFFT (6 threads) is ~4 − 5x
faster than the original MIT
sFFT

• From, n = 	2++ onwards,
PsFFT reduces execution
time compared to FFTW

• PsFFT is faster than FFTW
up to 9.23x

ICC 13.1.1 FFTW
3.3.3

6

Using CUDA to paralellize cusFFT on GPUs

Wang, Cheng, Sunita Chandrasekaran, and Barbara Chapman. "cusFFT: A
High-Performance Sparse Fast Fourier Transform Algorithm on
GPUs." Parallel and Distributed Processing Symposium, 2016 IEEE
International. IEEE, 2016.

• cusFFT is ~4𝑥 faster
than PsFFT on CPU,
~25𝑥 vs the MIT sFFT

• cusFFT is ~10𝑥 faster
than cuFFT for large
data size

K= 1000

CUDA 5.5

7

Using OpenACC – Parallel sFFT, cusFFT, sFFT &
FFTW

K= 1000 constant and N varied and vice versa

8
Presented at GTC 2017

Figure 5.5: OpenACC-sFFT vs cusFFT vs sFFT vs PsFFT vs FFTW (threads), for
a constant K=1000 and N is varied

other architectures which is available with OpenACC.

Figure 5.5 shows the comparison of results between, serial sFFT v2.0 by MIT,

CUDA Sparse FFT(cusFFT), Parallel Sparse FFT (PsFFT), FFTW with threads en-

abled (6 threads) and OpenACC-sFFT. FFTW library performs really well when the

sparsity is lower, but as sparsity increases it can be seen to have an exponential growth

to the time taken to perform FFT. Sparse FFT serial version performs worse as com-

pared to FFTW in the beginning, and then starts picking up, eventually beating FFTW

for really sparse input data. Parallel Sparse FFT performs almost 4-5x faster than

sFFT. The best among all these, with the least amount of time taken, is by cusFFT,

and following closely is OpenACC-sFFT.

61

Computation and Data ReorderingApproach: Computation/Data Reordering

1 2 3 4

1 2 3 4

Computation

Data

1 2 3 4

3 1 2 4

2 3 1 4

1 2 3 4

Computation
reordering

Data
reordering

May 17, 2016 Cheng Wang (cwang35@uh.edu) 7 / 22

A runtime transformation algorithm to exploit temporal and spatial
locality

Wang, Cheng, Sunita Chandrasekaran, and Barbara Chapman. " An Efficient
Data Layout Transformation Algorithm for Locality-Aware Parallel Sparse
FFT." IA3, Workshop at SC17 <to be published>

CPACK algorithmRethink the Consecutive Packing (CPACK) Algorithm

CPACK: A greedy algorithm which packs data into
consecutive locations in the order they are first accessed by
the computation

23 67 103

1 2 3 4

Computation

Data

9

CPACK

9 23 67 103

Data

6 cache miss

5 6 7 1 2 3 4

Computation

5 6 7

Data access order: 9, 23, 103, 23, 67, 23, 67
7 cache misses

Original Data reordered by CPACK
miss

hit

• First-touch policy packs (9,23) together
• Not optimal

May 17, 2016 Cheng Wang (cwang35@uh.edu) 17 / 22

Rethinking CPACK algorithm
Rethink the Consecutive Packing (CPACK) Algorithm

A�nity-conscious data reordering ...

23 67 103

1 2 3 4

Computation

Data

9

data
reordering

23 679 103

Data

4 cache miss

5 6 7 1 2 3 4

Computation

5 6 7

Data access order: 9, 23, 103, 23, 67, 23, 67
7 cache misses

Original An Optimal data layout
miss

hit

• CPACK does not consider data a�nity (i.e., how close the nearby
data elements are accessed together)

• Packs (23,67) rather than (9,23) should yield better locality

May 17, 2016 Cheng Wang (cwang35@uh.edu) 18 / 22

CPACKE Algorithm

A Padding Algorithm that Circumvents the Complexity

CPACKE Algorithm: Extends the CPACK by creating duplicated
copies of each repeatedly accessed data entry

23 67 103

1 2 3 4

Computation

Data

9

data
reordering

23 679 103

Data
4 cache miss

5 6 7 1 2 3 4

Computation

5 6 7

Data access order: 9, 23, 103, 23, 67, 23, 67
7 cache misses

Original Padding algorithm
miss

hit

23 23 67

• Advantage: Better locality than CPACK

• Disadvantage: Slight space overhead

May 17, 2016 Cheng Wang (cwang35@uh.edu) 20 / 22

Performance Evaluation

Performance Evaluation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

19 20 21 22 23 24 25 26 27 28

E
xe

cu
tio

n
 t
im

e
 (

se
c)

Signal size (2n)

Intel Xeon E5-2670 (Sandy Bridge)

PsFFT (before trans)
PsFFF (after trans)

• Applies the CPACKE to the perm+filter stage in sFFT
• Improves the performance by 30% for the irregular kernel
• Improves the overall performance of PsFFT by 20%

May 17, 2016 Cheng Wang (cwang35@uh.edu) 21 / 22

Questions?

1) Why did you write your own FFT?

2) What considerations are important for you in an FFT implementation?

3) What might you look for if there were to be a unified FFT interface (similar
to BLAS, LAPACK and SCALAPACK interfaces)?

4) How important are performance, portability, and scalability for you?

5) Will FFT be needed in exascale computing and if so how will it be achieved?

6) What would be a good FFT benchmark or a good way to include the FFT in
a high-performance computer benchmark?

November 15, 2017FFT BoF

