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About :

MIT’s sparse FFT 2012

Computing FFT in a sub-linear time to efficiently locate the
most significant output (very few “large” coefficients present in
the frequency domain)

Profiled & Parallelized sFFT
® Multicore using OpenMP (~4.5x on 6 threads)
e ARM + DSP using OpenMP

® GPUs using CUDA (~25x vs the MIT sFFT, ~10x faster than cuFFT for
large data size)

® GPUs using OpenACC (performance close to CUDA)

Dynamic irregular memory access patterns makes
parallelization most challenging

A runtime transformation algorithm to exploit temporal and
patial locality i

FFT BoF November 15, 2017
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Irregular memory access pattern

Time

n coordinates .
e Randomly permutes the signal

spectrum and bins into a small

Irregular data
number of buckets

reference pattern

e |rregular memory access pattern

B buckets

buckets[i % B] += signal[idx] * filter[i]
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Profiling sparse FFT
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Computational hotspot in the Computational hotspot in the
algorithm — Permutation + algorithm - Estimation is
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is fixed to 1000
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Using OpenMP to parallelize sFFT on Multicore

ICC 13.1.1 FFTW Intel Xeon E5-2640 (Sandy Bridge)
33310 ,

et ,  PsFFT (6 threads) is ~4 — 5x
PeFFT (6 threads) —s | faster than the original MIT
sFFT

« From, n= 22%? onwards,
PsFFT reduces execution
time compared to FFTW

Execution Time (sec)

v = SigiZ.Siz:?2n> D PsFFT is faster than FFTW
K= 1000 up to 9.23x

Wang, Cheng, et al. "Parallel sparse FFT." Proceedings of the 3rd
Workshop on Irregular Applications: Architectures and Algorithms.
\CM, 2013 ——




Using CUDA to paralellize cusFFT on GPUs & Demes 0 Brnocrs

GPU: NVIDIA Tesla K20x. CPU: Intel Xeon E5-2640 (Sandy Bridge) CUDA 5.5

10

SFFT (MIT) w@e

R e — i e cUsFFT is ~4x faster
) ‘- than PsFFT on CPU,
~25x vs the MIT sFFT

Execution Time (sec)

e cusFFT is ~10x faster
than cuFFT for large
19 ZIO 2‘1 2|2 2IS 2|4 215 2l6 27 data Slze

Signal Size (2")

K= 1000

Wang, Cheng, Sunita Chandrasekaran, and Barbara Chapman. "cusFFT: A

High-Performance Sparse Fast Fourier Transform Algorithm on

GPUs." Parallel and Distributed Processing Symposium, 2016 |IEEE
ional. IEEE, 2016.




Using OpenACC — Parallel sFFT, cusFFT, sFFT & &$1

FFTW

Denver,CO | onnects.
I

i MIT sFFT ———
FFTW(6 threads) ——
PsSFFT(6 threads) *
OpenACC '
CUusFFT —%—

K= 1000 constant and N varied and vice versa
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A runtime transformation algorithm to exploit temporal and spatial
locality
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CPACK algorithm

CPACK: A greedy algorithm which packs data into
consecutive locations in the order they are first accessed by
the computation

miss
—>
Original , Data reordered by CPACK
hit
Computation ’ Computation

Data Data

Data access order: 9, 23, 103, 23, 67, 23, 67 6 cache miss
7 cache misses

e First-touch policy packs (9,23) together

e Not optimal
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Rethinking CPACK algorithm

Affinity-conscious data reordering ...

miss
—>
Original hit An Optimal data layout
Computation » Computation
data
reordering
q k
9 23 | 67
Data Data
Data access order: 9, 23, 103, 23, 67, 23, 67 4 cache miss

7 cache misses

e CPACK does not consider data affinity (i.e., how close the nearby
data elements are accessed together)

e Packs (23,67) rather than (9,23) should yield better locality




CPACKE Algorithm &SCW
penver CO|Btracts

CPACKE Algorithm: Extends the CPACK by creating duplicated
copies of each repeatedly accessed data entry

miss
Original hit Padding algorithm
Computation Computation
data
reordering
#
9 67 | 23| 67
Data Data
Data access order: 9, 23, 103, 23, 67, 23, 67 4 cache miss

7 cache misses

e Advantage: Better locality than CPACK

e Disadvantage: Slight space overhead



Performance Evaluation &$1
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Intel Xeon E5-2670 (Sandy Bridge)

" PSFFT (before trans)
0.8 - PsFFF (after trans)

19 20 21 22 23 24 25 26 27 28
Signal size (2")

e Applies the CPACKE to the perm-filter stage in sFFT
e Improves the performance by 30% for the irregular kernel

e Improves the overall performance of PsFFT by 20%




Questions? &scw

1) Why did you write your own FFT?
2) What considerations are important for you in an FFT implementation?

3) What might you look for if there were to be a unified FFT interface (similar
to BLAS, LAPACK and SCALAPACK interfaces)?

4) How important are performance, portability, and scalability for you?

5) Will FFT be needed in exascale computing and if so how will it be achieved?

6) What would be a good FFT benchmark or a good way to include the FFT in
a high-performance computer benchmark?
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