
Shenfun/mpi4py-fft
Mikael Mortensen, University of Oslo, Department of Mathematics

and
Lisandro Dalcin, King Abdullah University of Science and Technology

https://github.com/spectralDNS/shenfun
https://bitbucket.org/mpi4py/mpi4py-fft

November 15, 2017 FFT BoF

mpi4py-fft
https://bitbucket.org/mpi4py/mpi4py-fft

�  Python module for pencil or slab decompositions

�  Highly configurable – any dimensions (2,3,4,…) –
any transforms over any axis in any order

�  Wrapping FFTW using (serial) pyFFTW

�  Transpose-free transforms using Alltoallw

November 15, 2017 FFT BoF

Simplicity

�  Once initialized and work arrays set up the code is
basically:

November 15, 2017 FFT BoF

Nothing more, nothing less.
No intermediate copying, no transposes
~500 lines of code

for all axes (any dimensionality):
 do FFT along aligned axis
 Alltoallw communicate to new alignment
FFT along last aligned direction

Shenfun
https://github.com/spectralDNS/shenfun

�  Python module for automating the spectral Galerkin
method on tensor product domains
�  Mixing Fourier and Legendre/Chebyshev discretizations
�  Uses mpi4py-fft to do transforms (pencil or slab)
�  High-level coding – similar to FEniCS (www.fenicsproject.org)
�  https://rawgit.com/spectralDNS/shenfun/master/docs/src/

KleinGordon/kleingordon_bootstrap.html

November 15, 2017 FFT BoF

from shenfun import *
from mpi4py import MPI
comm = MPI.COMM_WORLD
N = (512, 1024, 1033)
D0 = chebyshev.Basis(N[0])
F0 = fourier.C2CBasis(N[1])
F1 = fourier.R2CBasis(N[2])
T = TensorProductSpace(comm, (D0, F0, F1))

Performs the
decompositions

Questions?

1)  Why did you write your own FFT?

I needed to do parallel FFT in Python. At the time (2014) there was nothing
but serial alternatives.

2) What considerations are important for you in an FFT implementation?

Right now what’s most important is flexibility/configurability. I need
transforms of all sorts in the shenfun module. No limitations: 2D, 3D, 4D,
Fourier, Cosine, Sine, Chebyshev or no transforms. In any order. To be able to
solve any kind of partial differential equation on tensor product domains.

3) What might you look for if there were to be a unified FFT interface (similar
to BLAS, LAPACK and SCALAPACK interfaces)?

Configurability. I like the FFTW interface, with planning and execution.

November 15, 2017 FFT BoF

Questions?
4) How important are performance, portability, and scalability for you?

Performance is important, but less so than configurability. Portability is
a must. Scalability is nice, but often outside the hands of the software
developer (bandwidth etc.)

5) Will FFT be needed in exascale computing and if so how will it be
achieved?

Yes, but not a major concern of mine, so I have no further comments

6) What would be a good FFT benchmark or a good way to include the
FFT in a high-performance computer benchmark?

Forward and backward transforms of random numbers (real or
complex), output should equal input.

November 15, 2017 FFT BoF

Strong scaling Sheheen II

November 15, 2017 FFT BoF

Klein-Gordon test case
Better than linear scaling because of memory issues with too
large mesh per processor

The tasks per node
is a setting on Sheheen II
Less tasks per node gives
more memory per task.
With sufficient memory
scaling is excellent

Forward/backward

November 15, 2017 FFT BoF

5 consecutive forward/backward transforms.
Fastest transform and average shown. Reproduced twice
with more or less exactly the same results
On low counts P3DFFT probably faster because Alltoall is
faster than Alltoallw. On high core counts there may be
delays in transpose operations not required by Alltoallw

P3DFFT:
driver_sine.c
modified to
store fastest
+ average
Includes normali-
zation time.
Default settings
otherwise.

Weak scaling Shaheen II

November 15, 2017 FFT BoF

Not accounting for NlogN factor in transforms because element-
wise operations are just as time consuming. Scaling by NlogN and
the curve is more or less flat (giving the wrong impression of
perfect weak scaling)

Mesh of size
262144 per task
Corresponds to
64^3 per task

