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Motivation

Fast Fourier Transform (FFT) algorithm part of many HPC applications
− Plasma physics
− Chemistry and material science

Mostly 2D or 3D Fourier transforms

Distributed computation is communication intensive, scaling is a challenge

Optimised MPI collective routines are available – applied to FFTs
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Parallelisation approaches

Example of 3D FFT, applies also to 2D and 1D FFTs

Slab decomposition (preferred decomposition)

Pencil decomposition (more tasks than number of grid points in one direction)

Higher order decompositions (rarely used)

Binary exchange
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Parallelisation approaches contd.

Slab and pencil decomposition require all-to-all communication

Binary exchange requires point-to-point communication

Large message sizes: communication and computation overlap

We focus on strong scaling – small message sizes
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Implementation of the parallelisation

Multiple processing units with shared memory on the node, data transfer within the node
assumed to have zero cost

High speed network between nodes assumed to be fully connected (good approximation for
current Cray machines with Aries or Slingshot network), bandwidth-latency cost model

Computer networks might support more than one port per node, message size dependent,
on Aries network short messages many ports and long messages one port

For pure MPI solutions latency is reduced by collecting all messages on the nodes before
sending them and distributing them after receiving (presented at CUG 2018)→ reduction of
number of messages

Efficient MPI Alltoall or MPI Alltoallv required, persistent MPI well suited
(initialisation phase for setup of the communication algorithms), no performance difference
between these two collectives
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FFTs with pencil decomposition

Comparison between our all-to-all routine from “ext mpi”
https://github.com/eth-cscs/ext mpi collectives

and standard MPI all-to-all as reference

Strong scaling for pencil decomposed 3D FFT (FFTW) 6003, 7683 and 12003 grid-points
double precision real numbers, 12 (3× 4) tasks per node

Benefits for small message sizes (large number of nodes) visible in the strong scaling
experiments

——————————————-

A totally revised version of the library will be published soon
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FFTs with pencil decomposition contd.
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Figure: Relative speedup of our pencil decomposed 3D FFTs (“ext mpi” all-to-all plus FFTW) with
respect to standard MPI (FFTW), 12 (3× 4) tasks per node, 6003, 7683 and 12003 grid-points, Cray
XC50, presented at CUG 2018
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Alternative decompositions

In many cases decompositions enforced by constraints of the solver

For particle in cell (PIC) method minimum communication volume for particles is obtained
by division of domain (cube) in three directions

in 2D: versus

Either additional communication steps are required for rearrangement of data or FFTs are
applied directly to the decomposition→ parallelisation of the FFT algorithm in higher
dimension than necessary for resolution and number of nodes given
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More flexibility, resolution

FFT kernels for large prime numbers solved in parallel (parallel discrete Fourier transform
DFT)

Parallel DFT solve with MPI Allgather or MPI Reduce scatter block

Optimised routines exploiting multiple communication ports per node

allgather might also be applied to non-prime numbers, if no proper decomposition can
be made, or the prime factors are small and many ports are available

Example: 4× 4 distributed 2D mesh and 3 ports per node; Poisson equation
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More flexibility, resolution contd.

1 step 2 steps

FFT

2 steps

FFT — FFT

1 step

FFT

• 2 additional steps for data rearrangement (3 ports per node)

• Minimum computational cost
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More flexibility, resolution contd.

1 step 1 step

FFT

1 step

FFT — FFT

1 step

FFT

• 1 communication step per FFT (3 ports per node)

• Minimum computational cost for alltoall solution

• More restrictive with respect to resolutions

• allgather solution also with 1 communication step per FFT/DFT
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Distributed 1D FFT
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Distributed 1D FFT contd.
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Benchmarks

Distributed 1D FFT radix 2 and 4 and comparison with FFTW

Reordering of the data before execution included in the benchmark

4 MPI tasks per node communicating with each other using shared memory (“ext mpi”
library)

Both, allgather and reduce scatter block approach for small DFTs (FFT kernels)

Local FFTs within the node computed with FFTW
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Benchmarks contd.
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Figure: Weak scalability of various FFT and DFT implementations on Cray XC40 KNL, using standard MPI
(left), and ext mpi with shared memory between every 4 cores (right) in the custom implementations.
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Benchmarks contd.

256 grid points per task (core) is the break even for the allgather /
reduce scatter block (ext mpi) approach versus the alltoall (standard MPI)
method

Large part of the speedup of “ext mpi” compared to “standard MPI” comes form the data
reordering before the execution of the FFTs, done with all-to-all (ext mpi), not
necessary for solution of the Poisson equation
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Conclusions and outlook

For pure MPI solutions short messages all-to-all communication can be accelerated by
using shared memory on the node

Optimised Allgather and Reduce scatter block provide more degrees of freedom
to parallelise FFTs (DFTs)

Improved strong scaling properties of parallel FFTs

Work in progress, library will be further developed
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Thank you for your attention.

https://github.com/eth-cscs/ext mpi collectives
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